K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

Có thưởng thì mình làm cho

26 tháng 7 2019

Gọi số tự nhiên chia cho 20 dư 15 là a

khi đó a=20b+15 , b là số tự nhiên

Dễ thấy 20b chia hết cho 10 

15  chia 10 dư 5

=> a chia 10 dư 5 

Như vậy  không có số tự nhiên nào khi chia cho 20 dư 15 và khi chia cho 10 dư 4

3 tháng 11 2016

có đó

số chia 15 dư 6 là 21

số chia 24 dư 4 là 28

banh

3 tháng 11 2016

vừa chia 15 dư 6 vừa chia 24 dư 4

 

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

30 tháng 12 2021

Bài 19.4

a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
18 tháng 9 2016

Mọi người ơi mình làm thế này có đúng ko ạ ?

1, Nhận xét: 45 : 15 = 3 
do đó khi A chia cho 15 thì thương sẽ tăng lên 3 lần 
mà số dư 17 > 15 nên 17 : 15 = 1 dư 2 
Vậy A chia 15 thì được thương là một số gấp 3 lần thương ban đầu và cộng thêm 1 và số dư là 2. 

2, Vì số đó chia cho 26 và 24 đều dư 5 nên nếu bớt đi 5 đơn vị thì số đó chia hết cho cả 24 và 26. 
Số chia hết cho 24 và 26 là 312, 624, 936.... 
Số cần tìm là 317, 629, 941... 
Nhận thấy 941 : 24 = 39 dư 5 và 941 : 26 = 36 dư 5 
mà 39 - 36 = 3 
Vậy Số cần phải tìm là 941 

3, Gọi số cần tìm có dạng 8ab (gạch ngang trên đầu) 
Giả sử thêm vào số cần tìm 2 đơn vị thì số đó chia hết cho 3 và cho 5, đồng thời chia cho 3 dư 1 do đó số đó có tận cùng là 5 => chữ số b ban đầu là 3. 
Vì số đó chia cho 3 nên tổng các chữ số 8 + a + 3 = 11 + a chia cho 3 dư 1 
nên a = 2, 5, 8 (vì 13 : 3 = 4 dư 1, 16 : 3 = 5 dư 1 và 19 : 3 = 6 dư 1) 
Vậy số cần phải tìm là 823, 853, 883.

23 tháng 10 2017

đúng rồi

DT
16 tháng 11 2023

Gọi số tự nhiên phải tìm là : x

Theo bài ra, suy ra : \(\left(x+1\right)⋮3,7,25\)

Mà x là STN nhỏ nhất

\(=>x+1\in BCNN\left(3;7;25\right)\)

Ta có : \(3=3,7=7,25=5^2\)

\(=>BCNN\left(3;7;25\right)=3.7.5^2=525\)

hay x+1=525 

Vậy x = 524

21 tháng 11 2016

gọi số tự nhiên đó là a
Vì a chia 3 dư 2, chia 5 dư 1 nên:
=> a+2 chia hết cho 3
a+1 chia hết cho 5
=> a+4 chia hết cho 3 và 5
=> a+4 là bội của 3 và 5
BCNN của 3 và 5 là : 3x5=15
=> a+4 chia hết cho 15
=> a chia 15 thì dư 4
Đúng thì tick !