Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên chia cho 20 dư 15 là a
khi đó a=20b+15 , b là số tự nhiên
Dễ thấy 20b chia hết cho 10
15 chia 10 dư 5
=> a chia 10 dư 5
Như vậy không có số tự nhiên nào khi chia cho 20 dư 15 và khi chia cho 10 dư 4
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Bài 19.4
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
gọi số tự nhiên đó là a
Vì a chia 3 dư 2, chia 5 dư 1 nên:
=> a+2 chia hết cho 3
a+1 chia hết cho 5
=> a+4 chia hết cho 3 và 5
=> a+4 là bội của 3 và 5
BCNN của 3 và 5 là : 3x5=15
=> a+4 chia hết cho 15
=> a chia 15 thì dư 4
Đúng thì tick !