K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

a, Xét tam giác ABD và tam giác AED có 

AD _ chung ; ^BAD = ^EAD ; AB = AE 

Vậy tam giác ABD = tam giác AED (c.g.c) 

b, Ta có ^BKD + ^BDK = ^ABD 

mà ^ABD = ^AED ( 2 góc tương ứng ) 

mà ^AED = ^EDC + ^ECD 

-> ^BKD + ^BDK = ^EDC + ^ECD -> ^KBD = ^DEC 

Xét tam giác BDK và tam giác EDC có 

^KBD = ^DEC ( cmt ) ; BD = ED ( 2 cạnh tương ứng ) ; ^BDK = ^EDC ( đ.đ)

Vậy tam giác BDK = tam giác EDC (g.c.g) 

=> BK = EC ( 2 cạnh tương ứng ) 

c, Ta có BD = ED mà ED < DC do cạnh góc vuông nhỏ hơn cạnh huyền 

=> BD < DC 

7 tháng 4 2023

Thank youuuu những bạn giải quyết giúp mình bài tập :33

 

2:

a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN

nên G là trọng tâm

=>BG=2GM và CG=2GN

=>BG=GE và CG=GF

=>G là trung điểm chung của BE và CF

=>BCEF là hình bình hành

=>BC=EF

b: Xét ΔFAE và ΔBGC có

FA=BG

AE=GC

FE=BC

=>ΔFAE=ΔBGC

a: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AB chung

AD=AC

Do đó: ΔABD=ΔABC

b: Ta có: ΔABD=ΔABC

nên BD=BC

hay ΔBDC cân tại B

a: Xét ΔAHF vuông tại F và ΔABD vuông tại D có 

\(\widehat{HAF}\) chung

Do đó: ΔAHF∼ΔABD

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

c: Xét tứ giác BFHD có 

\(\widehat{BFH}+\widehat{BDH}=180^0\)

Do đó: BFHD là tứ giác nội tiếp

Suy ra: \(\widehat{ABE}=\widehat{ADF}\)

a: Xét ΔIBA vuông tại I và ΔABD vuông tại A có

góc IBA chung

=>ΔIBA đồng dạng với ΔABD

b: Xét ΔBAD vuông tại A và ΔBHE vuông tại H có

góc ABD=góc HBE

=>ΔBAD đồng dạng với ΔBHE

=>BA/BH=BD/BE

=>BA*BE=BH*BD

d: góc BIA=góc BHA=90 độ

=>BHIA nội tiếp

góc IAH=góc IBH

góc IHA=góc ABI

mà góc IBH=góc ABI

nên góc IAH=góc IHA

=>IA=IH

Bài 3: 

a) Xét ΔAMC và ΔDMB có 

MA=MD(gt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(gt)

Do đó: ΔAMC=ΔDMB(c-g-c)

Suy ra: \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//DB(Dấu hiệu nhận biết hai đường thẳng song song)

mà AC\(\perp\)AB(gt)

nên DB\(\perp\)AB

hay \(\widehat{ABD}=90^0\)

b) Xét ΔABD vuông tại B và ΔBAC vuông tại A có 

BA chung

BD=AC(ΔDMB=ΔAMC)

Do đó: ΔABD=ΔBAC(hai cạnh góc vuông)

c) Ta có: ΔABD=ΔBAC(cmt)

nên AD=BC(hai cạnh tương ứng)

mà \(AM=\dfrac{1}{2}AD\)(gt)

nên \(AM=\dfrac{1}{2}BC\)

a: Xét ΔABC và ΔABD có

AB chung

BC=BD

AC=AD

Do đó: ΔABC=ΔABD

b: Xét ΔACD và ΔBCD có

CD chung

AC=BC

AD=BD

Do đó:ΔACD=ΔBCD

3 tháng 2 2021

(B tự vẽ hình nhé !!!)

Ta có: ^DBC =  ^ABD = \(\dfrac{1}{2}\)^B (BD là phân giác ^B)

^ECB = ^ACE = \(\dfrac{1}{2}\)^C (CE là phân giác ^C)

Mà ^B = ^C (Tam giác ABC cân tại A)

=>  ^DBC =  ^ABD = ^ECB = ^ACE

Xét (O) có:   ^DBC =  ^ABD = ^ECB = ^ACE (cmt)

=> sđ cung AD = sđ cung DC = sđ cung AE = sđ cung EB

=>  cung AD =  cung DC =  cung  = sđ cung       

=> AD = AE và ^EAC = ^DAB 

Xét  ∆ ACE và ∆ ABD: 

+ ^EAC = ^DAB (cmt)

+ AD = AE (cmt)

+ ^ABD = ^ACE (cmt)

=> ∆ ACE = ∆ ABD (g - c - g)

b) Ta có: ^CAD = ^ACE (cung AE = cung AD)

Mà 2 góc này ở vị trí SLT 

=> AD // CE hay AD // EI (dhnb)

CMTT: AE // DI

Xét TG ADIE  có: AD // EI; AE // DI (cmt)

=> ADIE là hình bình hành (dhnb)

Mà AE = AD (cmt)

=> ADIE là hình thoi.

 

 

3 tháng 2 2021

Helpp