K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2015

Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D

a) Xét 2 tam giác : ABD và BẮC, ta có:

AD = AC  (GT)

AB LÀ CẠNH CHUNG

vậy tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

b)  Từ tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

=> góc ABD = góc ABC ( 2 góc tương ứng )

=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )

Xét 2 tam giác : MBD và MCB, ta có :

        BM là cạnh chung

        góc ABD = góc ABC

         BD = BC

=> tam giác MBD = TAM GIÁC MCB ( c . g. c)

ko sai đâu

11 tháng 2 2015

Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D

a) Xét 2 tam giác : ABD và BẮC, ta có:

AD = AC  (GT)

AB LÀ CẠNH CHUNG

vậy tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

b)  Từ tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

=> góc ABD = góc ABC ( 2 góc tương ứng )

=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )

Xét 2 tam giác : MBD và MCB, ta có :

        BM là cạnh chung

        góc ABD = góc ABC

         BD = BC

=> tam giác MBD = TAM GIÁC MCB ( c . g. c)

        chính xác, nhớ like nhoa!!!!

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

21 tháng 2 2020

A B C D 4cm

a) Xét △ABD và △ABC có :

           AB chung (gt)

           AD = AC (gt)

\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)

b) Vì △ABD = △ABC

\(\Rightarrow\)BD = BC

\(\Rightarrow\)△BCD cân tại B

\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)

\(\Rightarrow\widehat{CBD}=60^o\)

Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\)△BCD là tam giác đều

c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)

\(\Rightarrow\)△ABC là tam giác nửa đều

\(\Rightarrow\)BC = 2AC

\(\Rightarrow\)BC = 8 cm

Vì AD = AC (gt)

\(\Rightarrow\)AD = 4cm

Vậy BC = 8 cm

       AD = 4cm

21 tháng 2 2020

B A D C     Hình ảnh chỉ mang tính chất minh họa

a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\)  ( 2 góc kề bù )

\(\Rightarrow\widehat{DAB}=90^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có

AB : cạnh chung

AC =  AD  ( gt)

\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\)  ( c-g-c )

b) Theo câu a ta có \(\Delta ABC\) =    \(\Delta ABD\)

\(\Rightarrow BC=BD\)  (2 cạnh tương ứng )

   +) Xét \(\Delta BCD\) có

\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)

\(\Rightarrow\)\(\Delta BCD\)  là tam giác đều

cTheo  bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\)  ( gt)

\(\Rightarrow AD=4\) cm

+) Xét \(\Delta ABC\) vuông tại A  

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)  ( tính chất tam giác vuông )

\(\Rightarrow\widehat{ABC}+60^o=90^o\)

\(\Rightarrow\widehat{ABC}=30^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)

\(\Rightarrow AC=\frac{1}{2}BC\)  ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs   góc 30 độ bằng 1 nửa cạnh huyền )

\(\Rightarrow BC=2.AC\)

\(\Rightarrow BC=2.4=8\)  ( cm)

Vậy AD = 4 ( cm) và BC = 8  ( cm)

!! K chắc

@@ Học tốt

Chiyuki Fujito

a: Sửa đề: tính AB

AB=căn 5^2-3^2=4cm

b: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

=>ΔABC=ΔABD

c: ΔABC=ΔABD

=>BC=BD

=>ΔBCD cân tại B