Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D
a) Xét 2 tam giác : ABD và BẮC, ta có:
AD = AC (GT)
AB LÀ CẠNH CHUNG
vậy tam giác ABD = tam giác ABC ( 2 cạnh góc vuông bằng nhau )
b) Từ tam giác ABD = tam giác ABC ( 2 cạnh góc vuông bằng nhau )
=> góc ABD = góc ABC ( 2 góc tương ứng )
=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )
Xét 2 tam giác : MBD và MCB, ta có :
BM là cạnh chung
góc ABD = góc ABC
BD = BC
=> tam giác MBD = TAM GIÁC MCB ( c . g. c)
ko sai đâu
Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D
a) Xét 2 tam giác : ABD và BẮC, ta có:
AD = AC (GT)
AB LÀ CẠNH CHUNG
vậy tam giác ABD = tam giác ABC ( 2 cạnh góc vuông bằng nhau )
b) Từ tam giác ABD = tam giác ABC ( 2 cạnh góc vuông bằng nhau )
=> góc ABD = góc ABC ( 2 góc tương ứng )
=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )
Xét 2 tam giác : MBD và MCB, ta có :
BM là cạnh chung
góc ABD = góc ABC
BD = BC
=> tam giác MBD = TAM GIÁC MCB ( c . g. c)
chính xác, nhớ like nhoa!!!!
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
A B C D 4cm
a) Xét △ABD và △ABC có :
AB chung (gt)
AD = AC (gt)
\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)
b) Vì △ABD = △ABC
\(\Rightarrow\)BD = BC
\(\Rightarrow\)△BCD cân tại B
\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)
\(\Rightarrow\widehat{CBD}=60^o\)
Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\)△BCD là tam giác đều
c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)
\(\Rightarrow\)△ABC là tam giác nửa đều
\(\Rightarrow\)BC = 2AC
\(\Rightarrow\)BC = 8 cm
Vì AD = AC (gt)
\(\Rightarrow\)AD = 4cm
Vậy BC = 8 cm
AD = 4cm
B A D C Hình ảnh chỉ mang tính chất minh họa
a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\) ( 2 góc kề bù )
\(\Rightarrow\widehat{DAB}=90^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có
AB : cạnh chung
AC = AD ( gt)
\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\) ( c-g-c )
b) Theo câu a ta có \(\Delta ABC\) = \(\Delta ABD\)
\(\Rightarrow BC=BD\) (2 cạnh tương ứng )
+) Xét \(\Delta BCD\) có
\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)
\(\Rightarrow\)\(\Delta BCD\) là tam giác đều
cTheo bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\) ( gt)
\(\Rightarrow AD=4\) cm
+) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)
\(\Rightarrow AC=\frac{1}{2}BC\) ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
Vậy AD = 4 ( cm) và BC = 8 ( cm)
!! K chắc
@@ Học tốt
Chiyuki Fujito
a: Sửa đề: tính AB
AB=căn 5^2-3^2=4cm
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
=>ΔABC=ΔABD
c: ΔABC=ΔABD
=>BC=BD
=>ΔBCD cân tại B
a: Xét ΔABD vuông tại A và ΔABC vuông tại A có
AB chung
AD=AC
Do đó: ΔABD=ΔABC
b: Ta có: ΔABD=ΔABC
nên BD=BC
hay ΔBDC cân tại B