\(x^2-2\left(m-1x\right)+2m-5=0\)0
c/m ptr luon co 2 nghiem phan biet
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$\Delta'=(m-3)^2-(8-4m)=m^2-6m+9-8+4m=m^2-2m+1=(m-1)^2\geq 0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có nghiệm với mọi $m$
Pt trùng phương chỉ có các trường hợp
- Vô nghiệm
- Có 2 nghiệm phân biệt
- Có 4 nghiệm phân biệt
- Có 2 nghiệm kép
- Có 3 nghiệm (trong đó 2 nghiệm pb và 1 nghiệm kép \(x=0\))
Không tồn tại trường hợp có 3 nghiệm pb
\(x^4-2mx^2+\left(2m-1\right)=0\left(1\right)\)
Đặt \(t=x^2\), pt trở thành:
\(t^2-2mt+\left(2m-1\right)=0\left(2\right)\)
Để pt(1) có 3 nghiệm thì pt(2) có 1 nghiệm dương khác 0 và 1 nghiệm bằng 0
\(\Leftrightarrow2m-1=0\Leftrightarrow m=\dfrac{1}{2}\\ \Leftrightarrow t^2-t=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\left(nhận\right)\)
Vậy \(m=\dfrac{1}{2}\)
a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)
=25+8m-20=8m+5
Để phương trình có nghiệm kép thì 8m+5=0
=>m=-5/8
=>x^2-5x+25/4=0
=>x=5/2
b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)
\(=4m^2-4m+1-4m^2+8m-12=4m-11\)
Để phương trình có nghiệm kép thì 4m-11=0
=>m=11/4
=>x^2-9/2x+81/16=0
=>x=9/4
c: TH1: m=-3
=>-(2*(-3)+1)x+(-3-1)=0
=>-(-5x)-4=0
=>5x-4=0
=>x=4/5(nhận)
TH2: m<>-3
\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)
\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)
\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)
Để phương trình có nghiệm kép thì -4m+13=0
=>m=13/4
=>25/4x^2-15/2x+9/4=0
=>(5/2x-3/2)^2=0
=>x=3/2:5/2=3/2*2/5=3/5
ĐK \(a+b\ne0\)
Ta có \(\Delta=\left[\left(a-b\right)\left(a^2-b^2\right)\right]^2-4.\left(a+b\right)^2.\left(-2ab\right)\left(a^2+b^2\right)\)
\(=\left[\left(a-b\right)^2\left(a+b\right)\right]^2+8ab\left(a+b\right)^2\left(a^2+b^2\right)\)
\(=\left(a+b\right)^2\left[\left(\left(a-b\right)^2\right)^2+8ab\left(a^2+b^2\right)\right]\)
\(=\left(a+b\right)^2\left[\left(a^2-2ab+b^2\right)^2+8ab\left(a^2+b^2\right)\right]\)
\(=\left(a+b\right)^2\left[a^4+4a^2b^2+b^4-4a^3b-4ab^3+2a^2b^2+8a^3b+8ab^3\right]\)
\(=\left(a+b\right)^2\left[a^4+4a^2b^2+b^4+4a^3b+4ab^3+2a^2b^2\right]\)
\(=\left(a+b\right)^2.\left[\left(a^2+2ab+b^2\right)^2\right]=\left(a+b\right)^2\left(a+b\right)^4=\left(a+b\right)^6\)
Ta thấy \(\Delta=\left(a+b\right)^6>0\)với mọi \(a+b\ne0\)
Vậy phương trình luôn có 2 nghiệm phân biệt
a: \(\Delta=\left(2m\right)^2-4\left(-2m-10\right)\)
=4m^2+8m+40
=4m^2+8m+4+36=(2m+2)^2+36>0
=>PT luôn có nghiệm
b: \(\Delta=\left(2m-3\right)^2-4\left(2m-15\right)\)
\(=4m^2-12m+9-8m+60\)
\(=4m^2-20m+69\)
\(=4\left(m^2-5m+\dfrac{69}{4}\right)\)
\(=4\left(m^2-2\cdot m\cdot\dfrac{5}{2}+\dfrac{25}{4}+11\right)\)
\(=4\left(m-\dfrac{5}{2}\right)^2+44>0\)
=>Phương trình luôn có nghiệm
c: \(\Delta=\left(2m+4\right)^2-4\left(m-8\right)\)
\(=4m^2+16m+16-4m+32\)
\(=4m^2+12m+48\)
=4m^2+12m+9+39
=(2m+3)^2+39>0
=>PT luôn có nghiệm