Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Ta thấy:
\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt với mọi $m$
b) Áp dụng định lý Viete của pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)
Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$
Ta có đpcm.
câu a thay m=2 giải phương trình như bình thường
câu b ta thấy a.c = -(m2 +2) < 0
=> Phương trình luôn có 2 nghiệm trái dấu
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
mình ko biết rất xin lỗi
ai tích mình tíc lại
ai tích mình tích lại
aih lại tích mình tích lại
a) Để phương trình bậc hai trên có 2 nghiệm phân biệt thì ta phải có \(\Delta'>0\)
\(\Leftrightarrow\left[-\left(m+1\right)\right]^2-1.4m>0\)
\(\Leftrightarrow m^2-2m+1>0\)
\(\Leftrightarrow\left(m-1\right)^2>0\)
\(\Leftrightarrow m\ne1\)
ĐK \(a+b\ne0\)
Ta có \(\Delta=\left[\left(a-b\right)\left(a^2-b^2\right)\right]^2-4.\left(a+b\right)^2.\left(-2ab\right)\left(a^2+b^2\right)\)
\(=\left[\left(a-b\right)^2\left(a+b\right)\right]^2+8ab\left(a+b\right)^2\left(a^2+b^2\right)\)
\(=\left(a+b\right)^2\left[\left(\left(a-b\right)^2\right)^2+8ab\left(a^2+b^2\right)\right]\)
\(=\left(a+b\right)^2\left[\left(a^2-2ab+b^2\right)^2+8ab\left(a^2+b^2\right)\right]\)
\(=\left(a+b\right)^2\left[a^4+4a^2b^2+b^4-4a^3b-4ab^3+2a^2b^2+8a^3b+8ab^3\right]\)
\(=\left(a+b\right)^2\left[a^4+4a^2b^2+b^4+4a^3b+4ab^3+2a^2b^2\right]\)
\(=\left(a+b\right)^2.\left[\left(a^2+2ab+b^2\right)^2\right]=\left(a+b\right)^2\left(a+b\right)^4=\left(a+b\right)^6\)
Ta thấy \(\Delta=\left(a+b\right)^6>0\)với mọi \(a+b\ne0\)
Vậy phương trình luôn có 2 nghiệm phân biệt