(101/303+2022/5055+4004/15015)x2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2022\times2005-2000\times2022+15\times2022-20\times2021\)
\(=2022\times\left(2005-2000+15\right)-20\times2021\)
\(=2022\times20-20\times2021\)
\(=20\times\left(2022-2021\right)\)
\(=20\times1\)
\(=20\)
a, 2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 - 20 \(\times\) 2021
= (2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 )- 20 \(\times\) 2021
= 2022 \(\times\) (2005 - 2000 + 15) - 20 \(\times\) 2021
= 2022 \(\times\) (5 +15) - 20 \(\times\) 2021
= 2022 \(\times\) 20 - 20 \(\times\) 2021
= 20 \(\times\) (2022 - 2021)
= 20 \(\times\) 1
= 20
\(M=x^{2023}-2023.\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)
Ta có : \(x=2022\Rightarrow x+1=2023\)
\(\Rightarrow M=x^{2023}-\left(x+1\right).\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)
\(\Rightarrow M=x^{2023}-\left(x+1\right)x^{2022}+\left(x+1\right)x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}+...-\left(x+1\right)x^2+\left(x+1\right)x\)
\(\Rightarrow M=x^{2023}-x^{2023}-x^{2022}+x^{2022}+x^{2021}-x^{2021}-x^{2020}+x^{2020}+x^{2019}-x^{2019}-...-x^3-x^2+x^2+x\)
\(\Rightarrow M=x\)
\(\Rightarrow M=2022\)
Vậy \(M=2022\left(tạix=2022\right)\)
\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)
\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)
2022^100+100<2022^101+100
=>-99/2022^100+100<-99/2022^101+100
=>A<B
Ta có \(x+1=2022\)
\(P\left(x\right)=x^{101}-\left(x+1\right)x^{100}+...+\left(x+1\right)x-1\)
\(=x^{101}-x^{101}-x^{100}+...+x^2+x-1=x-1\)
-> P(x) = 2020
\(\frac{2727-101}{7575+303}\)= \(\frac{2626}{7878}\)= \(\frac{2626:2626}{7878:2626}\)= \(\frac{1}{3}\)
\(\left(\dfrac{101}{303}+\dfrac{2022}{5055}+\dfrac{4004}{15015}\right)\times2022=\left(\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{4}{15}\right)\times2022=\left(\dfrac{5}{15}+\dfrac{6}{15}+\dfrac{4}{15}\right)\times2022=\left(\dfrac{5+6+4}{15}\right)\times2022=\dfrac{15}{15}\times2022=1\times2022=2022\)