K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2015

Ta có :

\(3^{100}\)=\(\left(3^2\right)^{50}\)

\(2^{200}\)=\(\left(2^4\right)^{50}\)

mà \(3^2\)\(2^4\)

hay 9<16

nên\(3^{100}\)<\(2^{200}\)

20 tháng 5 2015

2200=22.100=(22)100=4100

Vì 3<4 nên 3100<4100

hay 3100<2200

cho cái đúng nhé

15 tháng 10 2023

Ta có:

\(2^{200}.2^{100}=\left(2^2\right)^{100}.2^{100}=4^{100}.2^{100}=\left(4.2\right)^{100}=8^{100}\)

\(3^{100}.3^{100}=\left(3.3\right)^{100}=9^{100}\)

Vì \(8< 9\) nên \(8^{100}< 9^{100}\)

Vậy \(2^{200}.2^{100}< 3^{100}.3^{100}\)

\(#WendyDang\)

15 tháng 10 2023

\(2^{200}\cdot2^{100}=2^{300}=(2^3)^{100}=8^{100}\\3^{100}\cdot3^{100}=(3\cdot3)^{100}=9^{100}\)

Vì \(8< 9\) nên \(8^{100}< 9^{100}\)

hay \(2^{200}\cdot2^{100}< 3^{100}\cdot3^{100}\)

19 tháng 12 2023

2125 và 3100

2125 = (25)25 = 3225

3100 = (34)25 = 8125

Mà 3225 < 8125 ⇒ 2125 < 3100 

B
20 tháng 12 2023

9 tháng 8 2023

a, 36=3.3.3.3.3.3=729

63=6.6.6=216

729>216 nên 36>63

b, 2200=22.100=(22)100=4100

4100=4100 nên 4100=2200

c, 333444=3334.111=(3334)111

444333=4443.111=(4443)111

Cả hai số đều cùng có số mũ 111 nên ta so sánh 3334 và 4443

3334=(3.111)4=34.1114=81.1114

4443=(4.111)3=43.1113=64.1113

81.1114>64.111nên 333444>444333

9 tháng 8 2023

a, 36 = (32)3 = 93 > 63 vậy 36 > 63

Các câu khác làm như Lộc 

6 tháng 12 2021

Bài 1:

\(P_{hv}=4\cdot4=16=4\cdot4=S_{hv}\)

Bài 2:

\(2^{200}\cdot2^{100}=2^{300}=\left(2^3\right)^{100}=8^{100}< 9^{100}=\left(3^2\right)^{100}=3^{200}=3^{100}\cdot3^{100}\)

17 tháng 4 2023

C gbcgghfdhsgxwvdgdrgdtdgst

3 tháng 8 2023

a) \(3^{54}\)

\(2^{200}=4^{100}>3^{54}\)

\(\Rightarrow3^{54}< 2^{200}\)

b) \(15^{12}=3^{12}.5^{12}\)

\(1^3.125^3=\left(5^3\right)^3=5^9< 3^{12}.5^{12}\)

\(\Rightarrow15^{12}>1^3.125^3\)

c) \(78^{12}-78^{11}=78^{11}.\left(7-1\right)=78^{11}.6\)

\(78^{11}-78^{10}=78^{10}.\left(7-6\right)=78^{10}.6< 78^{11}.6\)

\(\Rightarrow78^{12}-78^{11}>78^{11}-78^{10}\)

d) \(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.72>27^{44}\)

\(\Rightarrow72^{45}-72^{44}>27^{44}\)

e) \(3^{39}=\left(3^3\right)^{13}=27^{13}>11^{11}\)

\(\Rightarrow3^{39}>11^{11}\)

3 tháng 8 2023

Giải chi tiết dùm mik nhé.

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

10 tháng 10 2021
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv
27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$