Cho ∆ABC cân tại A, phân giác AH, D là trung điểm của AC. BD cắt AH tại G. Từ H kẻ đường thẳng song song với AC cắt AB tại K. Chứng minh:
a) ∆AHB = ∆AHC và AH ꓕBC.
b) G là trọng tâm của ∆ABC.
c) C, G, K thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
Hình bạn tự vẽ nha
a. Xét tam giác ABH và tam giác ACH có
cạnh AH chung
góc BAH = góc CAH [ vì AH là pg góc A ]
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác ABH = tam giác ACH [ c.g.c ]
\(\Rightarrow\)góc AHB = góc AHC [ góc tương ứng ]
mà góc AHB + góc AHC = 180độ
\(\Rightarrow\)góc AHB = góc AHC = \(\frac{180}{2}\)= 90độ
\(\Rightarrow\)AH vuông góc với BC
b.Theo câu a ; tam giác ABH = tam giác ACH
\(\Rightarrow\)HB = HC mà H\(\in\)BC
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow\)AH là đường trung tuyến của tam giác ABC \((1)\)
Vì D là trung điểm của AC nên
BD là đường trung trực của tam giác ABC\((2)\)
Từ \((1),(2)\)và G là giao điểm của AH , BD suy ra
G là trọng tâm của tam giác ABC
c.Ta có góc AGC + góc CGH = 180độ [ vì ba điểm A, G,H thẳng hàng ]
mà góc CGH = góc AGH [ đối đỉnh ]
\(\Rightarrow\)góc CGK = góc AGC + góc AGH = 180độ
Vậy góc CGK = 180độ
\(\Rightarrow\)Ba điểm C,G,K thẳng hàng
học tốt
Kết bạn với mình nhé
tham khảo ở đây : Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath
a) +Xét tg ABH và tg ACH có
AB=AC ( tg ABC cân tại A)
góc B= góc C (tg ABC cân tại A)
góc AHB= góc AHC=900 (AH là đường cao )
Suy ra: tg ABH= tg ACH
b)+ tg ABH=tg ACH (câu a) => góc BAH= góc CAH (2 góc tương ứng) (1)
+ Ta có: DH // AC (GT)
=> góc CAH= góc DHA ( 2 góc so le trong ) (2)
+ Từ (1) và (2) => góc BAH= góc DHA hay góc DAH= góc DHA
Suy ra: tg HDA cân tại D => AD=AH
c) +HD// AC => góc DHB= góc ACH ( 2 góc đồng vị ) hay góc DHB= góc ACB
Mà góc ABC= góc ACB (tg ABC cân tại A)
Suy ra: góc DHB= góc ACB => tg DBH cân tại D
=> DB=DH. Mặt khác: AD = DH (câu b)
Suy ra: DB=DA => CD là đường trung tuyến của tg ABC (3)
+ tg ABH= tg ACH (câu a )=> HB=HC (2 cạnh tương ứng ) => AH là đường trung tuyến của tg ABC (4)
+Từ (3) và (4) => G là trọng tâm của tg ABC (CD cắt AH tại G)
Mà BE là đường trung tuyến của tg ABC=> BE đi qua G
Suy ra: B, E, G thẳng hàng
d) mk bt lm nhưng lại k bt cách trình bày thông cảm nha ^^
câu d tương đương với
CM cvi tam giác ABC > AH+3x 2/3 BE = AH+BE+CD
Tương đương với bài toán chưngs minh độ dài 3 đường trung tuyến của 1 tam giác nhỏ hơn chu vi của tam giác đó
bài toán đấy b có thể tham khảo quyển nâng cao pt tập 2
1: Xét ΔBDH có \(\widehat{DBH}=\widehat{DHB}\left(=\widehat{ACB}\right)\)
nên ΔBDH cân tại D
Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
2: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>BG là đường trung tuyến ứng với cạnh AC
mà E là trung điểm của AC
nên B,G,E thẳng hàng
hong bít nàm T^T