Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha
a. Xét tam giác ABH và tam giác ACH có
cạnh AH chung
góc BAH = góc CAH [ vì AH là pg góc A ]
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác ABH = tam giác ACH [ c.g.c ]
\(\Rightarrow\)góc AHB = góc AHC [ góc tương ứng ]
mà góc AHB + góc AHC = 180độ
\(\Rightarrow\)góc AHB = góc AHC = \(\frac{180}{2}\)= 90độ
\(\Rightarrow\)AH vuông góc với BC
b.Theo câu a ; tam giác ABH = tam giác ACH
\(\Rightarrow\)HB = HC mà H\(\in\)BC
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow\)AH là đường trung tuyến của tam giác ABC \((1)\)
Vì D là trung điểm của AC nên
BD là đường trung trực của tam giác ABC\((2)\)
Từ \((1),(2)\)và G là giao điểm của AH , BD suy ra
G là trọng tâm của tam giác ABC
c.Ta có góc AGC + góc CGH = 180độ [ vì ba điểm A, G,H thẳng hàng ]
mà góc CGH = góc AGH [ đối đỉnh ]
\(\Rightarrow\)góc CGK = góc AGC + góc AGH = 180độ
Vậy góc CGK = 180độ
\(\Rightarrow\)Ba điểm C,G,K thẳng hàng
học tốt
Kết bạn với mình nhé
Lần sau chép đề cẩn thận nhé. Sai tùm lum.
a, ΔAHB = ΔAHC.
Xét hai tam giác vuông AHB và AHC có:
AB = AC (hai cạnh bên)
^B = ^C (hai góc ở đáy)
Do đó: ΔAHB = ΔAHC (cạnh huyền - góc nhọn)
b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )
Vì HD//BA (gt) => ^B = ^H1 (đồng vị)
Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)
Xét ΔDHM và ΔDCM có:
DH = DC (hai cạnh bên)
HM = MC (M là trung điểm của HC)
DM : chung
Do đó: ΔDHM = ΔDCM (c.c.c)
=> ^M1 = ^M2 (hai góc tương ứng)
Mà ^M1 + ^M2 = 180o (kề bù)
=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.
Vậy DM // AH (cùng vuông góc với BC).
c, G là trọng tâm ΔABC. AH + BD > 3HD.
Ta có: ^H2 = ^A1 (so le trong)
Mà ^A1 = ^A2 (hai góc tương ứng)
=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy)
=> DA = DH (hai cạnh bên)
Vì DH = DC (hai cạnh bên)
DA = DH (hai cạnh bên)
=> DA = DC
=> BD là trung tuyến ứng với cạnh bên AC.
Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.
Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB
=> G là trọng tâm của ΔABC.
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
a) Xét hai tam giác vuông ΔAHB và ΔAHC ta có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC ( cạnh huyền - cạnh góc vuông )
b) Ta có : ΔAHB = ΔAHC ( theo phần a )
=> Góc BAH = Góc CAH ( hai góc tương ứng ) (*)
Ta lại có: HD // AC ( GT )
=> Góc DHA = Góc CAH ( hai góc so le trong ) (**)
Từ (*) và (**) => Góc DHA = Góc BAH
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH ( theo phần a)
⇔ BH =HC ( hai cạnh tương ứng )
⇒ AH là trung tuyến ΔABC tại A (***)
Ta có : DH // AC ⇒ ∠DHB = ∠ACB ( hai góc đồng vị )
Mà ΔABC cân tại A ( GT )
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
=> DB =DH
Lại có AD = DH ( theo phần b ) => DA = DB
=> CD là trung tuyến ΔABC (****)
Từ (***) và (****) ta có:
AC cắt CD tại G => G là trọng tâm ΔABC
Mà CE = EA => BE là trung tuyến ΔABC tại B
=> BE qua G => B, G, E thẳng hàng
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC