K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Lần sau chép đề cẩn thận nhé. Sai tùm lum.

a, ΔAHB = ΔAHC.

Xét hai tam giác vuông AHB và AHC có:

AB = AC (hai cạnh bên)

^B = ^C (hai góc ở đáy)

Do đó: ΔAHB =  ΔAHC (cạnh huyền - góc nhọn)

b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )

Vì HD//BA (gt) => ^B = ^H1 (đồng vị) 

Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)

Xét ΔDHM và ΔDCM có:

DH = DC (hai cạnh bên)

HM = MC (M là trung điểm của HC)

DM : chung

Do đó: ΔDHM = ΔDCM (c.c.c)

=> ^M1 = ^M2 (hai góc tương ứng)

Mà ^M1 + ^M2 = 180o (kề bù)

=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.

Vậy DM // AH (cùng vuông góc với BC).

c, G là trọng tâm ΔABC. AH + BD > 3HD.

Ta có: ^H2 = ^A1 (so le trong)

Mà ^A1 = ^A2 (hai góc tương ứng)

=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy) 

=> DA = DH (hai cạnh bên)

Vì DH = DC (hai cạnh bên)

     DA = DH (hai cạnh bên)

=> DA = DC 

=> BD là trung tuyến ứng với cạnh bên AC.

Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.

Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB

=> G là trọng tâm của  ΔABC.

30 tháng 4 2019

A C B H M 1 2 D 1 1 2 2 1 2

7 tháng 6 2021

A) Trong TG cân, đường vuông góc xuất phát từ đỉnh cân đồng thời là đường trung tuyến, trung trực, phân giác

b) TG AMC = TG CME (g.c.g : AM= MC trung điểm; Góc AMB= góc CME đối đỉnh ; góc MCE = góc BAM so le trong)

c) I nằm trên trung điểm BC và trung điểm AC

D) 

Ta có: BM=ME ( TG AMC= TG CME)

=> BE = 2 BM 

 mà BI =2/3 BM ( I là trọng tâm)

=> BI= 1/3 BE

=> 3 BI = BE 

Xét TG AEB, ta có :

BE < AB+ AE ( Bất đẳng thức trong TG)

mà BE= 3 BI( cmt)

=> 3 BI< AB + AE

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.a,CM:BD=DEb,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CEDc,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND când,CM: DN và CK cắt nhau tại trung điểm mỗi đườngBài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của...
Đọc tiếp

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.

a,CM:BD=DE

b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED

c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân

d,CM: DN và CK cắt nhau tại trung điểm mỗi đường

Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK 

a,CM:Tam giác ABK cân và Tam giác ACK cân

b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE

c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng

d,Tìm điều kiện của Tam giác ABC để AB song song QK

Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)

a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC

b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA

c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN

d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm

Các bạn giúp mình với . 6h là mình phải nộp rồi

Bạn nào nhanh thì mình tích cho

Giúp mình nhanh nha

 

 

2
1 tháng 4 2020

A B C D E K N

XÉT TAM GIÁC ABD VÀ TAM GIÁC AED 

BA=EA ( GT)

\(\widehat{BAD}=\widehat{EAD}\)( GT)

AD-CẠNH CHUNG

=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)

=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2  góc tương ứng )

b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)

   cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)

  mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)

=> \(\widehat{KBD}=\widehat{CED}\)

XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :

\(\widehat{KBD}=\widehat{CED}\)(CMT)

BD=ED ( CMT)

\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )

=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)

=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)

c) 

vì \(BC//KN\)(GT)

=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )

MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA  KD VÀ NC 

=> KD//NC

=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)

XÉT TAM GIÁC KDN VÀ TAM GIÁC CND

\(\widehat{KDN}=\widehat{CND}\)( CMT)

DN-CẠNH CHUNG

\(\widehat{CDN}=\widehat{DNK}\)(CMT)

=> TAM GIÁC KDN = TAM GIÁC CND

=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)

LẠI CÓ DC= DK ( CMT )

=> KN=DK

XÉT TAM GIÁC KDN:KN=DK

=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)

1 tháng 4 2020

ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!