Tính nhanh
A , A =1 +2+2^2+2^3+.....+2^67
B B = 3^0 +3^1+3^2+.....3^51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
37.(43-51)-43.(37-51)
=37.43-37.51-43.37-43.51
=(37.43-43.57)-(37.51-43.51)
=0-(-306)
=306
2
a.(x-1).(2x+2)=0
=>x-1 hoặc 2x+2=0
=>x=1 hoặc 2x=-2
=>x=1 hoặc x=-1
Vậy x=+1
b.(6x-12).(x-3)=0
=>6x-12 hoặc x-3=0
=>6x=12 hoặc x=3
=>x=2 hoặc x=3
Vậy x=2 hoặc x=3
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
A. Số lượng số hạng là:
\(\left(51-1\right):2+1=26\) (số hạng)
Tổng: \(\left(51+1\right)\times26:2=676\)
B. \(1-2+3-4+5-...+51\)
\(=1+\left(-2+3\right)+\left(-4+5\right)+...+\left(-50+51\right)\)
\(=1+1+1+...+1\)
Số lượng số hạng (không tính số 1 đầu tiên) là:
\(\left(51-2\right):1+1=50\) (số hạng)
Số lượng cặp là: \(50:2=25\) (cặp)
Tổng là: \(1+25\times1=26\)
A=\(2^2-9^3+4^{-2}.16-2.5^2\)
\(=4-729+1-50=-774\)
B=\(\left(2^3.2\right).\dfrac{1}{2}+3^{-2}.3^2-7.1+5\)
\(B=2^4.\dfrac{1}{2}+1-7+5=8+1-7+5=7\)
C = 2-3 + (52)3.5-3 + 4-3.16 - 2.32 - 105.(\(\dfrac{24}{51}\))0
C = \(\dfrac{1}{8}\) + 56.5-3 + 4-3.42 - 2.9 - 105.1
C = \(\dfrac{1}{8}\) + 53 + \(\dfrac{1}{4}\) - 18 - 105
C = (\(\dfrac{1}{8}\) + \(\dfrac{1}{4}\)) - (105 - 125 + 18)
C = \(\dfrac{3}{8}\) - (-20 + 18)
C = \(\dfrac{3}{8}\) + 2
C = \(\dfrac{19}{8}\)
A=1+2+3+4+5+...+50
A=(50+1)+(49+2)+(48+3)+...
A=(50+1)*[(50-1):1+1]:2
A=51*25=1275
B=2+4+6+8+10+...+100
B=(100+2)+(98+4)+(96+6)+...
B=(100+2)*[(100-2):2+1]:2
B=102*25=2550
C=1+4+7+10+13+...+99
C=(99+1)+(96+4)+(93+7)+...
C=(99+1)*[(99-1):3+1]:2
C=100*16.8333=1683.33
D=2+5+8+11+14+...+98
D=(98+2)+(95+5)+(92+8)+...
D=(98+2)*[(98-2):3+1]:2
D=100*16.5=1650
E=1+2+3+4+5+...+25
E=(25+1)+(24+2)+(23+3)+...
E=(25+1)*[(25-1):1+1]:2
E=26*12.5=325
F=2+4+6+8+10+...+50
F=(50+2)+(48+4)+(46+6)+...
F=(50+2)*[(50-2):2+1]:2
F=52*12.5=650
G=3+5+7+9+11+...+51
G=(51+3)+(49+5)+(47+7)+...
G=(51+3)*[(51-3):2+1]:2
G=54*12.5=675
H=1+5+9+13+17+...+81
H=(81+1)+(77+5)+(73+9)+...
H=(81+1)*[(81-1):4+1]:2
H=82*10.5=861
a) A =1 + 2 + 3 + 4 + … + 50
Số số hạng của dãy số trên là:
(50 - 1) : 1 + 1 = 50 (số số hạng)
A =(1+ 50) . 50 : 2
= 51 . 50 : 2
= 2550 : 2
= 1275
b) B = 2 + 4 + 6 + 8 + ... + 100
Số số hạng của dãy số trên là:
(100 - 2) : 2 + 1 = 50 (số hạng)
Có số cặp là:
50 : 2 = 25 (cặp)
Tổng của 1 cặp là:
100 + 2 = 102
Tổng của dãy số là:
25 .102 = 2550
c) C = 1 + 3 + 5 + 7 + … + 99
Số số hạng của dãy trên là:
(99 - 1) : 2 + 1 = 50 (số số hạng)
C = (1 + 99) . 50 : 2
= 100 . 50 : 2
= 5000 : 2
= 2500
d) D = 2 + 5 + 8 + 11 + … + 98
Số số hạng của dãy trên là:
(98 - 2) : 3 + 1 = 33 (số số hạng)
=> Dãy trên có 16 cặp
D = (95 + 2) .16 + 98
= 97 . 16 + 98
= 1552 +98
= 1650
Bài 1:
A = 1 - 3 + 5 - 7 + 9 - 11 + ... + 49 - 51
=> A = (1 - 3) + (5 - 7) + (9 - 11) + ... + (49 - 51)
=> A = (-2) + (-2) + (-2) + ... + (-2)
có 13 số -2
=> A = (-2).13
=> A = -26
\(\)\(A=\frac{3}{1\times3}+\frac{3}{3\times5}+...+\frac{3}{49\times51}\)
\(\Leftrightarrow A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(\Leftrightarrow A=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)
\(\Leftrightarrow A=\frac{3}{2}.\frac{50}{51}\)
\(\Leftrightarrow A=\frac{25}{17}\)
\(\)\(\)
a) A = 1 + 2 + 22 + 23 + ... + 267
2A = 2 + 22 + 23 + 24 + ... + 268
2A - A = ( 2 + 22 + 23 + 24 + ... + 268 ) - ( 1 + 2 + 22 + 23 + ... + 267 )
A = 268 - 1
b) B = 30 + 31 + 32 + ... + 351
3B = 3 + 32 + 33 + ... + 352
3B - B = ( 3 + 32 + 33 + ... + 352 ) - ( 30 + 31 + 32 + ... + 351 )
2B = 352 - 30
B = ( 352 - 30 ) : 2