a , b thuộc N Hãy chứng minh a + b < a × b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a > b mà b \(\in\) N* nên a \(\in\) N*
\(a>b\Rightarrow an>bn\) (vì a,b,n \(\in\) N*)
\(\Rightarrow ab+an>ab+bn\) hay \(a.\left(b+n\right)>b.\left(a+n\right)\)
Do đó \(\frac{a}{b}>\frac{a+n}{b+n}\). Đề sai.
Ta có:\(\frac{a}{b}< \frac{a+n}{b+n}\Rightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Rightarrow ab+an< ba+bn\)
\(\Rightarrow an< bn\Rightarrow a< b\Rightarrow\frac{a}{b}< 1\)(đúng)
\(\Rightarrowđpcm\)
#)Sửa đề :
CMR : Nếu a/b < c/d (b,d thuộc N*) thì a/b < a+c/ b+d < c/d
#)Giải :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{cb}{bd}\)
Vì b, d thuộc N* => ad < bc
=> ad + ab < bc + ab => a( b + d ) < b( a + c ) => \(\frac{a}{b}< \frac{a+c}{b+d}\)
Tương tự, ta có :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)