K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Ta có:\(\frac{a}{b}< \frac{a+n}{b+n}\Rightarrow a\left(b+n\right)< b\left(a+n\right)\)

\(\Rightarrow ab+an< ba+bn\)

\(\Rightarrow an< bn\Rightarrow a< b\Rightarrow\frac{a}{b}< 1\)(đúng)

\(\Rightarrowđpcm\)

2^n =10a +b . do 0<b<9 
=> b là chữ số tậm cùng của 2^n 
xét n=4k tức n chia hết cho 4 
=> 2^n có tận cùng là 6 
=> b=6 => ab chia hết cho 6 
xét n=4k + r với 1 ≤ r ≤ 3 và r là số nguyên 
=> 2^n =10a + b 
=> b chia hết cho 2 ,giờ ta phải cm a chia hết cho 3 
2^n =(2^4k)*2^r do 2^4k luôn có tận cùng là 6 mà 2 ≤ 2^r ≤8 
=> 2^4k *2^r có tận cùng thuộc { 2,4,8} 
=> b= 2^r vs r nguyên và 1 ≤ r ≤ 3 
=> 10 a =2^n -b =2^n -2^r =2^r ( 2^4k -1) chia hết cho 3 ( do 2^4k -1 chia hết cho 3) 
=> 10a chia hết cho 3 => a chia hết cho 3 
mà b chia hết cho 2 
=> ab chia hết cho 6

23 tháng 7 2016

bạn ơi, bạn có biết giải bài này bằng đồng dư thức không?

12 tháng 2 2017

1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n

Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)

          \(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)

Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

2.Tương tự

21 tháng 3 2017

ko hiểu

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
a. 

$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$

Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$

$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$

b.

$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$

Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$

$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự