Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a}{b}< \frac{a+n}{b+n}\Rightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Rightarrow ab+an< ba+bn\)
\(\Rightarrow an< bn\Rightarrow a< b\Rightarrow\frac{a}{b}< 1\)(đúng)
\(\Rightarrowđpcm\)
a)ta có:\(\frac{a}{b}=\frac{a.\left(b+m\right)}{b.\left(b+m\right)}=\frac{ab+am}{b^2+bm}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right)b}=\frac{ab+bm}{bm+b^2}\)
vì a<b =>am<bm=>ab+am<ab+bm
hay\(\frac{a}{b}< \frac{a+m}{b+m}\)
b)tương tự như phần a
thêm đk a,b,n dương
Có a/b<1
=>a<b
<=> an<bn
<=> an+ab<bn+ab
<=> a(b+n)<b(a+n)
\(\Leftrightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
đpcm
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
:D
2^n =10a +b . do 0<b<9
=> b là chữ số tậm cùng của 2^n
xét n=4k tức n chia hết cho 4
=> 2^n có tận cùng là 6
=> b=6 => ab chia hết cho 6
xét n=4k + r với 1 ≤ r ≤ 3 và r là số nguyên
=> 2^n =10a + b
=> b chia hết cho 2 ,giờ ta phải cm a chia hết cho 3
2^n =(2^4k)*2^r do 2^4k luôn có tận cùng là 6 mà 2 ≤ 2^r ≤8
=> 2^4k *2^r có tận cùng thuộc { 2,4,8}
=> b= 2^r vs r nguyên và 1 ≤ r ≤ 3
=> 10 a =2^n -b =2^n -2^r =2^r ( 2^4k -1) chia hết cho 3 ( do 2^4k -1 chia hết cho 3)
=> 10a chia hết cho 3 => a chia hết cho 3
mà b chia hết cho 2
=> ab chia hết cho 6