K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

      `[ x - 1 ] / 12 = 4 / [ x - 1 ]`

`=> 4 ( x - 1 ) = 12 ( x - 1 )`

`=> 4x - 4 = 12x - 12`

`=> 12x - 4x = -4 + 12`

`=> 8x = 8`

`=> x = 8 : 8`

`=> x = 1`

Vậy `x = 1`

1 tháng 5 2022

học giỏi có khác

1 tháng 5 2020

a)\(-\frac{12}{7}\cdot\left(\frac{3}{4}-x\right)\cdot\frac{1}{4}=0\)

=>\(\frac{3}{4}-x=0\)

=>\(x=\frac{3}{4}\)

Vậy  \(x=\frac{3}{4}\)

b) \(x:\frac{17}{8}=-\frac{2}{5}\cdot\left(-\frac{9}{17}\right)\)

=>\(x:\frac{17}{8}=\frac{18}{85}\)

=>\(x=\frac{18}{85}\cdot\frac{17}{8}=\frac{9}{20}\)

Vậy \(x=\frac{9}{20}\)

14 tháng 8 2023

a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.

14 tháng 8 2023

e phải tách ra nhé 

31 tháng 7 2017

1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)

\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)

\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)

\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

Đặt  \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)

\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)

Thay a , ta có :

\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

2 tháng 8 2023

(3\(x\) - 2)(\(x+4\)) - (1- \(x\))(2-\(x\)) =(\(x+1\))(\(x-2\))

3\(x^2\) + 12\(x\) - 2\(x\) - 8  - (\(x+1\))(\(x-2\)) -  [-(\(x-2\))](1- \(x\)) = 0 

                    3\(x^2\) + 10\(x\) - 8  -  (\(x-2\))( \(x\) + 1 - 1 + \(x\)) = 0

                    3\(x^2\) + 10\(x\) - 8 - (\(x-2\)). 2\(x\)  = 0

                    3\(x^2\) + 10\(x\) - 8 - 2\(x^2\) + 4\(x\)     = 0

                      \(x^2\) + 14\(x\) -  8 = 0

                    \(x^2\) + 7\(x\) + 7\(x\) + 49 - 57 = 0 

                     \(x\)\(x\) + 7) + 7(\(x\) + 7) = 57

                       (\(x+7\))(\(x\) + 7) =57

                       (\(x+7\))2 = 57

                        \(\left[{}\begin{matrix}x+7=\sqrt{57}\\x+7=-\sqrt{57}\end{matrix}\right.\)

                         \(\left[{}\begin{matrix}x=-7+\sqrt{57}\\x=-7-\sqrt{57}\end{matrix}\right.\)

Vậy \(x\) \(\in\) { -7 - \(\sqrt{57}\); - 7 + \(\sqrt{57}\)}

                     

18 tháng 8 2021

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}.\)

\(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)(cộng 2 vế cho 3)

\(\frac{x+1}{2009}+\frac{2009}{2009}+\frac{x+2}{2008}+\frac{2008}{2008}+\frac{x+3}{2007}+\frac{2007}{2007}=\frac{x+10}{2000}+\frac{2000}{2000}+\frac{x+11}{1999}+\frac{1999}{1999}+\frac{x+12}{1998}+\frac{1998}{1998}.\)

\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}.\)

\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

x+2010=0

x=-2010

18 tháng 8 2021

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Leftrightarrow\left(1+\frac{x+1}{2009}\right)+\left(1+\frac{x+2}{2008}\right)+\left(1+\frac{x+3}{2007}\right)\)

\(=\left(1+\frac{x+10}{2000}\right)+\left(1+\frac{x+11}{1999}\right)+\left(1+\frac{x+12}{1998}\right)\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x=2010}{1998}\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}\)

\(=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Leftrightarrow x+2010=0\)

\(\Leftrightarrow x=-2010\)