Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a, \(x\) : \(\dfrac{13}{3}\) = -2,5
\(x\) = -2,5 . \(\dfrac{13}{3}\)
\(x\) = \(\dfrac{65}{6}\)
b,\(\dfrac{3}{5}\)\(x\) = \(\dfrac{1}{10}-\)\(\dfrac{1}{4}\)
\(\dfrac{3}{5}x\) = \(\dfrac{-3}{20}\)
\(x\) = \(\dfrac{-3}{20}\) : \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{-1}{4}\)
c, \(\dfrac{25}{9}-\dfrac{12}{13}x=\dfrac{7}{9}\)
\(\dfrac{12}{13}x\)\(=\dfrac{25}{9}-\dfrac{7}{9}\)
\(\dfrac{12}{13}x=2\)
\(x=2:\dfrac{12}{13}\)
\(x=\dfrac{13}{6}\)
a) 3/7 + 4/9 + 4/7 + 5/9
= ( 3/7 + 4/7 ) + ( 4/9 + 5/9 )
= 7/7 + 9/9
= 1 + 1
= 2
b)1/5 + 4/10 + 9/15 + 16/20 + 25/25 + 36/30 + 49/35 + 64/40 + 81/45
= 1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 6/5 + 7/5 + 8/5 + 9/5
= ( 1/5 + 9/5 ) + ( 2/5 + 8/5 ) + (7/5 + 3/5 ) + ( 4/5 + 6/5 ) + 5/5
= 2 + 2 + 2 + 2 + 1
= 2 x 4 + 1
= 8 +1
= 9
c) 1/8 + 1/12 + 3/8 + 5/12
= ( 1/8 + 3/8 ) + ( 1/12 + 5/12)
= 4/8 + 6/12
= 1/2 + 1/2
= 2/4 = 1/2
mỏi tay rồi
d; (1 - \(\dfrac{1}{2}\)) x (1 - \(\dfrac{1}{3}\)) x (1 - \(\dfrac{1}{4}\)) x ... x ( 1 - \(\dfrac{1}{100}\))
= \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{3}{4}\) x ... x \(\dfrac{99}{100}\)
= \(\dfrac{1}{100}\)
a)\(-\frac{12}{7}\cdot\left(\frac{3}{4}-x\right)\cdot\frac{1}{4}=0\)
=>\(\frac{3}{4}-x=0\)
=>\(x=\frac{3}{4}\)
\(x=\frac{3}{4}\)
b) \(x:\frac{17}{8}=-\frac{2}{5}\cdot\left(-\frac{9}{17}\right)\)
=>\(x:\frac{17}{8}=\frac{18}{85}\)
=>\(x=\frac{18}{85}\cdot\frac{17}{8}=\frac{9}{20}\)
\(x=\frac{9}{20}\)