Tìm MIN của
\(A=32\frac{x}{y}+2008\frac{y}{x}\)với \(x+\frac{1}{y}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x+y+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=x+\frac{1}{4x}+y+\frac{1}{4y}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT AM-GM: \(A\ge2\sqrt{\frac{x}{4x}}+2\sqrt{\frac{y}{4y}}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)=2+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT Schwarz dạng Engel: \(A\ge2+\frac{1}{4}.\frac{4}{x+y}\ge3\) (Do \(x+y\le1\))
Vậy Min A = 3. Dấu "=" xảy ra <=> x=y=1/2
A=\(\frac{x}{y}+\frac{y}{x}\)
Đặt \(\frac{x}{y}=a\left(a>0\right)\)
vì x,y>0 áp dụng bđt cô si
\(x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\)
\(1\ge x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\)
\(\frac{1}{4}\ge\frac{x}{y}\)
\(0< a\le\frac{1}{4}\)
Có A=\(a+\frac{1}{a}\left(với0< a\le\frac{1}{4}\right)\)
A=\(16a+\frac{1}{a}-15a\)
a>0 cô si
A\(\ge2\sqrt{16a\cdot\frac{1}{a}}-15\cdot\frac{1}{4}=\frac{17}{4}\)
D=XR x=y=1/2
Các bất đẳng thức đúng : \(ab\le\frac{\left(a+b\right)^2}{4};\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng ta được :
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\)
Ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
\(\frac{3}{2xy}\ge\frac{3}{2.\frac{\left(x+y\right)^2}{4}}=\frac{3}{2.\frac{1}{4}}=6\)
\(\Rightarrow A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\ge4+6=10\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(A_{min}=10\) tại \(x=y=\frac{1}{2}\)
Vì a,b>0
A\(\ge2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}\cdot\sqrt{1+x^2y^2}\)
A\(\ge2\sqrt{\frac{1+x^2y^2}{xy}}\)
A\(\ge2\sqrt{\frac{1}{xy}+xy}\)
Đặt xy=a, a>0
Ta cs xy\(\le\frac{\left(x+y\right)^2}{4}\le\frac{1^2}{4}=\frac{1}{4}\)
ĐK 0<a<\(\frac{1}{4}\)
\(\Leftrightarrow A\ge2\sqrt{\frac{1}{a}+a}\)
A\(\ge2\sqrt{16a+\frac{1}{a}-15a}\)
a>0, áp dụng bđt cô si
\(A\ge2\sqrt{2\sqrt{16a\cdot\frac{1}{a}}-\frac{15}{4}}\)
A\(\ge\sqrt{17}\)
Dấu = x ra a=b=0.5
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\)
Ta co:\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge2\sqrt{\frac{1}{x}\cdot4x}-3x=4-3x\left(AM-GM\right)\)
Tuong tu:\(y+\frac{1}{y}=4-3y\)
Ta co:\(A\ge\left(4-3x\right)^2+\left(4-3y\right)^2\)
\(=16-24x+9x^2+16-24y+9y^2\)
\(=32-24\left(x+y\right)+9\left(x^2+y^2\right)\)
Ap dung bat dang thuc phu:\(\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Khi do,ta co:
\(A\ge32-24\cdot1+9\cdot\frac{1}{2}=\frac{25}{2}\)
Dau bang xay ra khi va chi khi:\(x=y=\frac{1}{2}\)
P/S:E ko chac dau ah,e ms lm quen vs no thoi