Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(x>0,y>0\)thỏa mãn\(x+y\le1\)
Tìm giá trị nhỏ nhất của: \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)
\(=4+2+5=11\)
Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\)
Ta co:\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge2\sqrt{\frac{1}{x}\cdot4x}-3x=4-3x\left(AM-GM\right)\)
Tuong tu:\(y+\frac{1}{y}=4-3y\)
Ta co:\(A\ge\left(4-3x\right)^2+\left(4-3y\right)^2\)
\(=16-24x+9x^2+16-24y+9y^2\)
\(=32-24\left(x+y\right)+9\left(x^2+y^2\right)\)
Ap dung bat dang thuc phu:\(\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Khi do,ta co:
\(A\ge32-24\cdot1+9\cdot\frac{1}{2}=\frac{25}{2}\)
Dau bang xay ra khi va chi khi:\(x=y=\frac{1}{2}\)
P/S:E ko chac dau ah,e ms lm quen vs no thoi
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)
\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )
Dấu "=" xảy ra <=> x=y=z=1/3
Đặt : A = 1/x^2+xy + 1/y^2+xy
Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )
Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :
A >= 4/x+y = 4/1 = 4
Dấu "=" xảy ra <=> x=y=1/2
=> ĐPCM
Tk mk nha
1/x + 1/y >= 4/x+y
<=> x+y/xy >= 4/x+y
<=> (x+y)^2/xy(x+y) >= 4xy/xy(x+y)
<=> x^2 + y^2 + 2xy >= 4xy (x,y > 0)
<=> x^2 + y^2 + 2xy - 4xy >= 0
<=> (x-y)^2 >= 0 ( luôn đúng với mọi x,y)
Vậy bất đẳng thức đề bài đúng
1/x +1/y >= 4 / x+y
>=4 :4/3
>=3
F >= 4/3 +3
F>= 13/3
Dau = xay ra <=> x=y=2/3
Ta chứng minh: \(x^2+y^2+z^2\ge xy+yz+zx\)
Thật vậy \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Áp dụng BĐT Svacxo, ta có:
\(\text{ Σ}_{cyc}\frac{1}{1+xy}\ge\frac{\left(1+1+1\right)^2}{3+xy+yz+zx}=\frac{9}{3+xy+yz+zx}\)
\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Theo hệ quả của bất đẳng thức Cauchy ta có :
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\frac{9}{4}\le\frac{9}{3+xy+xz+yz}\left(1\right)\)
Ta có : \(C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+xz}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{4}\)
Vậy \(C_{min}=\frac{9}{4}\)
Dấu " =" xảy ra khi \(x=y=z=\sqrt{\frac{1}{3}}\)
Chúc bạn học tốt !!!