Cho x, y> 1
Tìm GTNN của \(N=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)
\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)
\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)
\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)
\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow x+y=0\Rightarrow y=-x\)
\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)
Dấu "=" xảy ra khi \(x=y=0\)
+ \(P=\frac{x}{y^2+1}+\frac{1}{y^2+1}+\frac{y}{z^2+1}+\frac{1}{z^2+1}+\frac{z}{x^2+1}+\frac{1}{x^2+1}\)
+ \(\frac{1}{x^2+1}=\frac{x^2+1-x^2}{x^2+1}=1-\frac{x^2}{x^2+1}\)
+ \(x^2+1\ge2x\forall x\)
\(\Rightarrow\frac{x^2}{x^2+1}\le\frac{x^2}{2x}=\frac{x}{2}\)
\(\Rightarrow-\frac{x^2}{x^2+1}\ge-\frac{x}{2}\)
\(\Rightarrow\frac{1}{x^2+1}\ge1-\frac{x}{2}\)
Dấu "=" xảy ra <=> x = 1
+ Tương tự ta cm đc :
\(\frac{1}{y^2+1}\ge1-\frac{y}{2}\). Dấu "=" xảy ra <=> y = 1
\(\frac{1}{z^2+1}\ge1-\frac{z}{2}\). Dấu "=" xảy ra <=> z = 1
Do đó : \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)\)
\(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (1)
Dấu "=" xảy ra <=> x = y = z = 1.
+ \(\frac{x}{y^2+1}=\frac{x\left(y^2+1\right)-xy^2}{y^2+1}=x-\frac{xy^2}{y^2+1}\)
\(\Rightarrow\frac{x}{y^2+1}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\) ( do \(y^2+1\ge2y\forall y\) )
Dấu "=" xảy ra <=> y = 1.
Tương tự : \(\frac{y}{z^2+1}\ge y-\frac{yz}{2}\). Dấu "=" xảy ra <=> z = 1.
\(\frac{z}{x^2+1}\ge z-\frac{zx}{2}\). Dấu "=" xảy ra <=> x = 1.
Do đó : \(\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}\)
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}\)
( do \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) )
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (2)
Dấu "=" xảy ra <=> x = y = z = 1.
Từ (1) và (2) suy ra
\(P\ge\frac{3}{2}+\frac{3}{2}=3\)
P = 3 \(\Leftrightarrow x=y=z=1\)
Vậy Min P = 3 \(\Leftrightarrow x=y=z=1\).
\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)
\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)
\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)
\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)
Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)
\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)
\(\Rightarrow Min_A=\frac{17}{3}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) Với x,y>0 \(x+y\ge2\sqrt{xy}\Rightarrow1\ge2\sqrt{xy}\Rightarrow2xy\le0,5\)
\(N=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{2xy}=\frac{4}{\left(x+y^2\right)}+\frac{1}{0,5}=4+2=6\)
Min N = 6 <=> x=y =0,5
Từ hàng 2 rút gọn xuống hàng 3 OK rồi đúng ko?
Sử dụng BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow-\left(ab+bc+ca\right)\ge-\frac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow-\frac{1}{2}\left(ab+bc+ca\right)\ge-\frac{1}{6}\left(a+b+c\right)^2\)
\(S=x-\frac{xy^2}{1+y^2}+y-\frac{yz^2}{1+z^2}+z-\frac{zx^2}{1+x^2}\)
\(S\ge x+y+z-\frac{xy^2}{2y}-\frac{yz^2}{2z}-\frac{zx^2}{2x}\)
\(S\ge3-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\(S_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y
= (x-y)2+2xy / x-y
Mà xy = 1 => 2xy = 2. Thay vào, ta có
(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y
= x-y + 2 / x-y
Áp dụng BĐT Cauchy, ta có
x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3
Vậy Min A = (√2)3