\(\dfrac{x^2+y^2}{x-y}\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y

                            = (x-y)2+2xy / x-y

Mà xy = 1 => 2xy = 2. Thay vào, ta có

(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y

                                                  = x-y + 2 / x-y

Áp dụng BĐT Cauchy, ta có

x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3

Vậy Min A = (√2)3

AH
Akai Haruma
Giáo viên
23 tháng 9 2017

Lời giải:

Ta có: \(A=\frac{3}{x^2+y^2}+\frac{4}{xy}=3\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{5}{2xy}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}=4\)

Áp dụng BĐT Am-Gm: \(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{5}{2xy}\geq 10\)

Do đó: \(A\geq 3.4+10\Leftrightarrow A\geq 22\)

Vậy \(A_{\min}=22\Leftrightarrow x=y=\frac{1}{2}\)

2 tháng 11 2018

\(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(a,b>0\right)\)(bn tự cm BĐT này) và BĐT cauchy ta có:

\(A\ge\dfrac{4}{x^2+2xy+y^2}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{\left(x+y\right)^2}\)=

\(=\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{5}{\left(x+y\right)^2}\ge4+2+5=11\)(vì x+y\(\le\)1)

Vậy Min A = 11 \(\Leftrightarrow x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

Ta có \(B=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+xy+y^2}=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{xy}{x^2+xy+y^2}\)

\(=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}-\frac{1}{9}\)

Áp dụng BĐT AM-GM:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}\geq 2\sqrt{\frac{1}{9}}=\frac{2}{3}\)

Do đó: \(B\geq \frac{8}{9}.2+\frac{2}{3}-\frac{1}{9}=\frac{7}{3}\Leftrightarrow B_{\min}=\frac{7}{3}\)

Dấu bằng xảy ra khi $x=y$


19 tháng 3 2017

cái này giống này - Here. Mỗi tội bài này Min=22 khi x=y=1/2

16 tháng 2 2019

a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)

Vậy ...

b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)

\(\Leftrightarrow x^2y=y^2x=1\)

\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)

\(\Leftrightarrow x=y=1\)

Vậy ...

9 tháng 11 2018

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\ge\dfrac{4}{1^2}+\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}\ge4+2=6\)

Dấu "=" xảy ra <=> x = y = 0,5

21 tháng 7 2018

# Bài 1

* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương

* Với \(x,y>0\) áp dụng (1) ta có

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)

* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)

Áp dụng (2) với x , y > 0 ta có

\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)

* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)

\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xra khi \(x=y=4\)

Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t