tìm GTNN của 19x^2+54y^2+16z^2-16xz-24yz+36xy+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2+4x+5
=(2x)2+2.2x.1+1+4
=(2x+1)2+4
mà (2x+1)2\(\ge\)0 => (2x+1)2+4 \(\ge\)4 => biểu thức có GTNN là 4 <=> 2x+1=0
2x=-1
x=-1/2
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
- Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)
\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
2: (3x-4)^2+2>=2
=>5/(3x-4)^2+2<=5/2
=>B>=-5/2
Dấu = xảy ra khi x=4/3
4: D=(3x^2+7-4)/(3x^2+7)=1-4/3x^2+7
3x^2+7>=7
=>4/3x^2+7<=4/7
=>-4/3x^2+7>=-4/7
=>D>=3/7
Dấu = xảy ra khi x=0
2) B = \(\dfrac{-5}{\left(3x-4\right)^2+2}\)
Ta có: ( 3x-4)2 \(\ge\) 0 , \(\forall\) x
=> ( 3x-4)2 +2 \(\ge\) 2, \(\forall\) x
=> \(\dfrac{1}{\left(3x-4\right)^2+2}\) \(\le\) \(\dfrac{1}{2}\) , \(\forall\) x
=> \(\dfrac{-5}{\left(3x-4\right)^2+2}\) \(\ge\) \(\dfrac{-5}{2}\) , \(\forall\) x
=> B \(\ge\) \(\dfrac{-5}{2}\)
Vậy B đạt GTNN khi bằng \(\dfrac{-5}{2}\)
Dấu "= " xảy ra khi 3x - 4 = 0
4) D=\(\dfrac{3x^2+3}{3x^2+7}\)
= 1 - \(\dfrac{4}{3x^2+7}\)
Ta có: 3x2 \(\ge\) 0, \(\forall\) x
=> 3x2 +7 \(\ge\) 7, \(\forall\) x
=> \(\dfrac{1}{3x^2+7}\) \(\le\) \(\dfrac{1}{7}\)
=> \(\dfrac{4}{3x^2+7}\) \(\le\) \(\dfrac{4}{7}\)
=> 1 - \(\dfrac{4}{3x^2+7}\) \(\ge\) \(\dfrac{3}{7}\)
Vậy D đạt GTNN khi bằng \(\dfrac{3}{7}\)
Dấu "=" xảy ra khi x = 0