\(A=19x^2+5y^2+16z^2-16xz-24yz+36xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

a/ Sửa đề:

\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+36xy+6x^2}=x^2+y^2+32\)

\(\Leftrightarrow64x^2+64y^2+2048-64\sqrt{22x^2+36xy+6y^2}-64\sqrt{22y^2+36xy+6x^2}=0\)

\(\Leftrightarrow\left(22x^2+36xy+6y^2-64\sqrt{22x^2+36xy+6y^2}+1024\right)+\left(22y^2+36xy+6x^2-64\sqrt{22y^2+36xy+6x^2}+1024\right)+\left(36x^2-72xy+36y^2\right)=0\)

\(\Leftrightarrow\left(\sqrt{22x^2+36xy+y^2}-32\right)^2+\left(\sqrt{22y^2+36xy+6x^2}-32\right)^2+36\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{22x^2+36xy+6y^2}=32\\\sqrt{22y^2+36xy+6x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{64x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=4\\x=y=-4\end{cases}}\)

9 tháng 5 2017

Câu b đề sai rồi.

20 tháng 10 2018

\(5x^2+8xy+5y^2=36\)

\(\Rightarrow5\left(x+y\right)^2-2xy=36\)

\(\Rightarrow-2xy=36-5\left(x+y\right)^2\)

Ta lại có \(M=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2+36-5\left(x+y\right)^2=36-4\left(x+y\right)^2\)

Mà \(-4\left(x+y\right)^2\Leftarrow0\)với mọi \(x;y\)nên \(M=36-4\left(x+y\right)^2\Leftarrow36\)

Dấu "=" xảy ra khi \(x=-y\)

24 tháng 11 2017

Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2 

22 tháng 2 2019

\(P=\frac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}=1+\frac{\left(x-2y\right)^2}{x^2+2xy+5y^2}=\frac{17}{4}-\frac{1}{3}.\frac{\left(3x+7y\right)^2}{x^2+2xy+5y^2}\)

\(\Rightarrow\hept{\begin{cases}min_P=1\\max_P=\frac{17}{4}\end{cases}}\)

28 tháng 8 2021

 làm sao để ra max được v

 

8 tháng 4 2019

\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :

\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)

\(\Rightarrow a+b-2\le\sqrt{8}-2\)

\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)

8 tháng 4 2019

Do x ; y không âm , \(x^2+y^2=1\)

\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)

\(x,y\ge0\Rightarrow xy\ge0\)

Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)

\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)

\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)

\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)

\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)

30 tháng 1 2017

Mình nghĩ là tìm GTNN chớ.

\(A=-\left(x+1-2y\right)^2+\left(1-2y\right)^2-5y^2+10y-6\)

\(A=-\left(x+1-2y\right)^2-y^2+6y-5\)

\(A=-\left(x+1-2y\right)^2-\left(y-3\right)^2+4\le4\)

Vậy, GTNN của A là 4 đạt được khi \(x=5;y=3\)

30 tháng 1 2017

v~ thanh niên đúng là ngu copy là giỏi đề thế mà còn bảo GTNN dc

14 tháng 6 2019

Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...

14 tháng 6 2019

Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé

1 tháng 1 2019

Áp dụng bđt Svác xơ, ta có:

\(A\ge\dfrac{\left(\sqrt{2x}+\sqrt{3y}+\sqrt{4z}\right)^2}{2\left(4x^2+9y^2+16z^2\right)}\)\(=\dfrac{2x+3y+4z+2\left(\sqrt{6xy}+\sqrt{12yz}+\sqrt{8xz}\right)}{2}\)\(\ge\dfrac{1+2\left(3\sqrt[3]{\sqrt{576x^2y^2z^2}}\right)}{2}\)(BĐT Cô-si)\(\ge\dfrac{1+6}{2}=\dfrac{7}{2}\)

Vậy Amin=\(\dfrac{7}{2}\Leftrightarrow\)\(\left\{{}\begin{matrix}\dfrac{2x}{9y^2+16z^2}=\dfrac{3y}{4x^2+16z^2}=\dfrac{4z}{4x^2+9y^2}\\\sqrt{6xy}=\sqrt{12yz}=\sqrt{8xz}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}y=2z\)

1 tháng 1 2019

Viết lại bài toán: Cho \(a^2+b^2+c^2=1\). Tìm max \(\sum\dfrac{a}{b^2+c^2}\)

với a=2x, b=3y, c=4z.

Áp dụng BĐT AM-GM:

\(a\left(b^2+c^2\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a^2\left(1-a^2\right)\left(1-a^2\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\dfrac{8}{27}}=\dfrac{2}{3\sqrt{3}}\)

Do đó \(VT\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Vậy \(A_{Min}=\dfrac{3\sqrt{3}}{2}\)