K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

11 tháng 9 2021

\(B=1+3+3^2+3^3+...+3^{100}+3^{101}\)

\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}+3^{102}\)

\(\Rightarrow3B-B=3^{102}-1\)

\(\Leftrightarrow2B=3^{102}-1\)

\(\Leftrightarrow B=\dfrac{3^{102}-1}{2}\)

17 tháng 12 2023

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

30 tháng 12 2022

Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;

Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.

24 tháng 12 2023

\(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)

`#3107.101107`

\(S=1+3^1+3^2+3^3+...+3^{101}\)

\(3S=3+3^2+3^3+...+3^{102}\)

\(3S-S=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2S=3+3^2+3^3+3^{102}-1-3-3^2-...-3^{101}\)

\(2S=3^{102}-1\)

\(S=\dfrac{3^{102}-1}{2}\)

Vậy, \(S=\dfrac{3^{102}-1}{2}.\)

3s=3+3^2+3^3+....+3^102

3s-s=2s

2s=3^102-1

s=3^102-1 trên2

12 tháng 10 2019

Ta có : \(3A=3+3^2+3^3+...+3^{102}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2A=3^{102}-1\)

\(A=\frac{3^{102}-1}{2}\)

Ta có : 3102 - 1 = 3100 + 2 - 1

                   = 325.4 + 2 - 1

                   = 325.4 . 32 - 1

                   = ....1 . 9 - 1

                   = ...9 - 1

                   = ...8

=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)

Vậy chữ số tận cùng của A là 4

12 tháng 10 2019

Nhân A thêm 3

Lấy 3A - A được 3^102 -1

A = (3^102-1)/2

3^4k có tận cùng là 1

nên A có tận cùng là 0

16 tháng 3 2022

\(B=1-3+3^2-3^3+...+3^{100}\)

\(\Rightarrow3B=3-3^2+3^3-3^4+...+3^{101}\)

\(\Rightarrow3B+B=3-3^2+3^3-3^4+...+3^{101}+\left(1-3+3^2-3^3+...+3^{100}\right)\)

\(\Rightarrow4B=3^{101}+1\)

\(\Rightarrow B=\dfrac{3^{101}+1}{4}\)

16 tháng 3 2022

thank nha