K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

20 tháng 11 2023

Z=31+32+33+34+...+3100

3Z=3.(31+32+33+34+...+3100)

3Z=3.31+3.32+3.33+...+3.3100

3Z=32+33+34+...+3101

Lấy 3Z= 32+33+34+...+3101     

 -

        Z=31+32+33+34+...+3100

-------------------------------------------        2Z=3^101-3 =>Z=(3^101-3):2 Chú thích: ^ là mũ, cái phần đặt tính thì bạn để các số bằng nhau thẳng hàng nhé

 

 

11 tháng 3 2022

Đây Là Lớp Mấy

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

Đặt biểu thức là $A$

\(A=\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+....+\frac{1}{3^{99}}+\frac{1}{3^{101}}\)

\(3^2.A=3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

Trừ theo vế:

\(8A=3-\frac{1}{3^{101}}\Rightarrow A=\frac{3}{8}-\frac{1}{8.3^{101}}\)

5 tháng 3 2021

Akai Haruma Giáo viên Giúp em câu em gửi trong inb nhé chị

P/s : Sorry bạn chủ tus nhé , mình lượn ngay đây 

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)

NV
5 tháng 3 2021

\(A=1+3^2+3^4+...+3^{102}\)

\(9A=3^2+3^4+...+3^{102}+3^{104}\)

\(\Rightarrow9A-A=3^{104}-1\)

\(\Rightarrow8A=3^{104}-1\)

\(\Rightarrow A=\dfrac{3^{104}-1}{8}\)

26 tháng 10 2023

a: \(A=3^{100}-3^{99}+3^{98}-...+3^2-3\)

=>\(3A=3^{101}-3^{100}+3^{99}-...+3^3-3^2\)

=>\(4A=3^{101}-3\)

=>\(A=\dfrac{3^{101}-3}{4}\)

b: \(B=\left(-2\right)^0+\left(-2\right)^1+...+\left(-2\right)^{2024}\)

=>\(B\cdot\left(-2\right)=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}\)

=>\(-2B-B=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}-\left(-2\right)^0-\left(-2\right)^1-...-\left(-2\right)^{2024}\)

=>\(-3B=-2^{2025}-1\)

=>\(B=\dfrac{2^{2025}+1}{3}\)

c: \(C=\left(-\dfrac{1}{5}\right)^0+\left(-\dfrac{1}{5}\right)^1+...+\left(-\dfrac{1}{5}\right)^{2023}\)

=>\(\left(-\dfrac{1}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^1+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{2024}\)

=>\(\left(-\dfrac{6}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^{2024}-\left(-\dfrac{1}{5}\right)^0\)

=>\(C\cdot\dfrac{-6}{5}=\dfrac{1}{5^{2024}}-1=\dfrac{1-5^{2024}}{5^{2024}}\)

=>\(C\cdot\dfrac{6}{5}=\dfrac{5^{2024}-1}{5^{2024}}\)

=>\(C=\dfrac{5^{2024}-1}{5^{2024}}:\dfrac{6}{5}=\dfrac{5^{2024}-1}{6\cdot5^{2023}}\)

29 tháng 12 2020

S = 1 + 3 + 32 + 33 +... + 32014

3S = 3 + 32 + 33 + 34 + ... + 32015

3S - S = ( 3 + 32 + 33 + 34 + ... + 32015) - (1 + 3 + 32 + 33 +... + 32014)

2S = 32015 - 1

S = \(\dfrac{3^{2015}-1}{2}\)

29 tháng 12 2020

Mình vẫn không hiểu lắm!

 

1 tháng 8 2023

\(D=1+3+3^2+3^3+3^4+...+3^{2022}\)

\(3D=3.\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(3D=3+3^2+3^3+3^4+3^5+...+3^{2023}\)

\(3D-D=\left(3+3^2+3^3+3^4+3^5+...+3^{2023}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(2D=\left(3^{2023}-1\right)\)

\(D=\left(3^{2023}-1\right):2\)

3D=3+3^2+...+3^2023

=>2D=3^2023-1

=>\(D=\dfrac{3^{2023}-1}{2}\)