Rút gọn :
\(A=\sqrt{1008-\sqrt{2015}-\sqrt{1008+\sqrt{2015}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
=\(\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}\)
=\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
áp dụng vào biểu thức ta có\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
=\(1-\frac{1}{\sqrt{2016}}\)
đến đây cậu tự giải nốt nhé
Câu a : Ta có :
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)
Mà : \(\sqrt{2016}+\sqrt{2015}< \sqrt{2017}+\sqrt{2016}\) \(\Rightarrow\dfrac{1}{\sqrt{2016}+\sqrt{2015}}>\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)
Vậy : \(\sqrt{2016}-\sqrt{2015}>\sqrt{2017}-\sqrt{2016}\)
Câu b : Ta có : \(P=\left(\sqrt{a}+\sqrt{b}\right)\Rightarrow P^2=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Theo BĐT Bu - nhi - a - cốp xki ta có :
\(P^2=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)=2.1008=2016\)
\(\Rightarrow P\le\sqrt{2016}\)
Vậy GTLN của P là \(\sqrt{2016}\) khi \(a=b=504\)
\(A=\sqrt[]{1+2015^2+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\sqrt[]{\left(1+2015\right)^2-2.2015+\dfrac{2015^2}{\left(2015+1\right)^2}}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\sqrt[]{\left(1+2015-\dfrac{2015}{2015+1}\right)^2}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\left|1+2015-\dfrac{2015}{2016}\right|+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=1+2015-\dfrac{2015}{2016}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=1+2015=2016\)
a: =2015+6-5=2016
b: =10căn 2+5căn 2-6căn 2=9căn 2
c: =3căn 3-4căn 3-5căn 3=-6căn 3
d: =2căn 3+3căn 3-4căn 3=căn 3
\(A=2015+6-5==2015+1=2016\)
\(B=5\sqrt{2^3}+\sqrt{5^2.2}-2\sqrt{3^2.2}\\ =10\sqrt{2}+5\sqrt{2}-6\sqrt{2}\\ =\left(10+5-6\right)\sqrt{2}=9\sqrt{2}\)
\(C=\sqrt{3^3}-2\sqrt{2^2.3}-\sqrt{5^2.3}\\ =3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\\ =\left(3-4-5\right)\sqrt{3}=-6\sqrt{3}\)
\(D=\sqrt{2^2.3}+\sqrt{3^3}-\sqrt{4^2.3}\\ =2\sqrt{3}+3\sqrt{3}-4\sqrt{3}\\ =\left(2+3-4\right)\sqrt{3}=\sqrt{3}\)
Trục căn thức:
\(C=\frac{\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+...+\)
\(+\frac{\left(\sqrt{2017}-\sqrt{2015}\right)}{\left(\sqrt{2017}+\sqrt{2015}\right)\left(\sqrt{2017}-\sqrt{2015}\right)}\)
\(C=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2017}-\sqrt{2015}}{2017-2015}\)
\(C=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+...+\frac{\sqrt{2017}-\sqrt{2015}}{2}\)
\(C=\frac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2015}}{2}\)
\(C=\frac{\sqrt{2017}-1}{2}\)
Với mọi n>0 ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng đẳng thức trên vào D ta được:
\(D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}=1-\frac{\sqrt{2016}}{2016}=\frac{2016-\sqrt{2016}}{2016}\)
\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)
\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)
=\(-\sqrt{2}+\sqrt{2015}\)
Ta có :
\(A.\sqrt{2}=\sqrt{2}.\left(\sqrt{1008-\sqrt{2015}}-\sqrt{1008+\sqrt{2015}}\right)\)
\(=\sqrt{2016-2\sqrt{2015}}-\sqrt{2016+2\sqrt{2015}}\)
\(=\sqrt{\left(\sqrt{2015}-1\right)^2}-\sqrt{\left(\sqrt{2015}+1\right)^2}\)
\(\left(\sqrt{2015}-1\right)-\left(\sqrt{2015}+1\right)=2\)
\(\Rightarrow A=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
A = \(-\sqrt{2}\)
ok mk nhé!!676587634543634656756658766666666666666666666666666455555