Cho hcn ABCD có dtich là 2020. Gọi M là trung điểm AB, và điểm N thuộc cạnh AD sao cho AN=2AD. CM và BN cắt nhau tại K. Tính dtich tam giác KBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 tam giác AMK và tg BMK có
AM=BM; có chung đường cao từ K->AB nên
\(S_{AMK}=S_{BMK}=\dfrac{1}{2}S_{BKA}=\dfrac{1}{2}x50=25cm^2\)
2 tam giác ABN và tam giác CBN có chung đường cao từ B->AC nên
\(\dfrac{S_{ABN}}{S_{CBN}}=\dfrac{AN}{NC}=\dfrac{1}{2}\)
Hai tg ABN và tg CBN có chung BN nên
\(\dfrac{S_{ABN}}{S_{CBN}}=\) đường cao từ A->BN / đường cao từ C->BN \(=\dfrac{1}{2}\)
Hai tg BKA và tg BKC có chung BK nên
\(\dfrac{S_{BKA}}{S_{BKC}}=\) đường cao từ A->BN / đường cao từ C->BN \(=\dfrac{1}{2}\)
\(\Rightarrow S_{BKC}=2xS_{BKA}=2x50=100cm^2\)
\(\Rightarrow S_{BMC}=S_{BMK}+S_{BKC}=25+100=125cm^2\)
Hai tg BMC và tg AMC có chung đường cao từ C->AB nên
\(\dfrac{S_{BMC}}{S_{AMC}}=\dfrac{BM}{AM}=1\Rightarrow S_{BMC}=S_{AMC}=125cm^2\)
\(\Rightarrow S_{ABC}=S_{BMC}+S_{AMC}=125+125=250cm^2\)
bn tự kẻ hình nha!
a) ta có: AB = DC ( ACBD là hình bình hành)
----> BM = CN ( = 1/2. AB = 1/2 . DC)
mà BM // CN
-----> BMNC là h.b.h
b) xét tam giác AMD và tam giác CNB
có: AM = CN ( = 1/2.AB = 1/2.CD)
AD = BC (gt)
^DAM = ^NCB (gt)
-----> tg AMD = tg CNB (c-g-c)
-----> DM = NB ( 2 cạnh t/ ư)
c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK
bài làm
Gọi AC cắt DB tại E
ta có: tg AMD = tg CNB (cmt)
-----> ^AMD = ^CNB
mà ^AMD = ^MDN ( AB//DC)
-----> ^CNB = ^MDN
mà ^CNB, ^MDN nằm ở vị trí đồng vị
-----> DM// BN
và DM = BN (pb)
-----> DMBN là h.b.h
-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)
tương tự bn cx chứng minh: MINK là h.b.h ( MI = NK = 1/2.DM = 1/2.BN)
-----> MN cắt IK tại E
------------> AC,BD, MN,IK đồng quy tại E
lx
lx