Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ nêu cách làm bạn tự triển khai nha!
CM \(\Delta ADC=\Delta CBE (g.c.g)\) (*)
(\(\angle C_1=\angle C_2\) cùng phụ với \(\angle ACB\))
\(\Rightarrow AC=CE\Rightarrow \Delta ACE \) cân tại C
\(\Rightarrow AB=CE\)
Từ (*) suy ra:
\(S_{ANEC}=S_{ACE}+S_{ANE}=S_{ABCD}+S_{ANE}\)
\(=\dfrac{1}{2}AB^2+\dfrac{1}{2}NA.2AB=\dfrac{1}{2}AB(AB+2NA)\)
Mà \( S_{ANCE}=\dfrac{15}{8} S_{ABCD}\) \(\Rightarrow \dfrac{15}{8}.\dfrac{1}{2} AB^2=\dfrac{1}{2}.AB(2AN+AB)\)
\(\Rightarrow 2AN+AB=\dfrac{15}{8}AB\) \(\Rightarrow \dfrac{NA}{AB}=\dfrac{7}{16}\)
CM \(\Delta NAM \) đồng dạng với \(\Delta CBM\) \((g.g)\)
\(\Rightarrow \dfrac{NA}{AB}=\dfrac{NA}{BC}=\dfrac{AM}{MB}=\dfrac{7}{16}\)
Vậy cần lấy M sao cho \(\dfrac{AM}{MB}=\dfrac{7}{16}\)
a) Xét tam giác vuông ABC, theo Pitago ta có: \(NC^2=NB^2+BC^2=x^2+a^2\)
Xét tam giác vuông NCF, chiều cao CB: Áp dụng hệ thức lượng ta có : \(NF=\frac{NC^2}{NB}=\frac{x^2+a^2}{x}\)
AN = a - x ; \(\frac{EA}{BC}=\frac{AN}{NB}\Rightarrow EA=\frac{a-x}{x}.a=\frac{a^2-ax}{x}\)
\(AF=AN+NF=a-x+\frac{a^2+x^2}{x}=\frac{ax+a^2}{x}\)
Vậy nên \(S_{ACEF}=S_{EAF}+S_{CAF}=\frac{1}{2}.AF.EA+\frac{1}{2}AF.BC\)
\(=\frac{1}{2}.\frac{ax+a^2}{x}.\left(\frac{a^2-ax}{x}+a\right)=\frac{1}{2}.\frac{ax+a^2}{x}.\frac{a^2}{x}=\frac{a^4+a^3x}{2x^2}\left(đvdt\right)\)
b) Ta có \(\frac{a^4+a^3x}{2x^2}=3a^2\Rightarrow a^2+ax-6x^2=0\)
\(\Rightarrow\left(a-2x\right)\left(a+3x\right)=0\)
Do a, x > 0 nên a = 2x hay N là trung điểm AB.