K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

a,

Xét Δ ADC và Δ AEB

Ta có : AD = AE (gt)

           AC = AB (Δ ABC cân tại A)

          \(\widehat{DAC}=\widehat{EAB}\) (góc chung)

=> Δ ADC = Δ AEB (c.g.c)

b, Ta có : Δ ADC = Δ AEB (cmt)

=> \(\widehat{ACD}=\widehat{ABE}\)

9 tháng 5 2022

 a)Xét △ABE và △ACD có

AB = AC ( △ABC cân tại A)

AD = AE (gt)

\(\widehat{A}\) là góc chung

=> △ABE = △ACD (c-g-c) 

=> BE = CD ( e cạnh tương ứng)

b) Vì △ABE = △ACD 

nên \(\widehat{ABE}=\widehat{ACD}\)

c) 

Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)

\(\text{​​}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)

mà \(\widehat{ABE}=\widehat{ACD}\)

\(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

=> △KBC là tam giác cân tại K

 

1 tháng 7 2016

a) Xét tam giác ABE và tam giác ADC: 

AE=AC(theo gt tam giác ABC cân ) 

góc A chung 

AE=AD(theo gt) 

=> Tam giác ABE=tam giác ADC(c.g.c) 

nên BE=CD(dpcm) 

b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng) 

c) Xét Tam giác DKB và tam giác EKC 

góc DKB=góc EKC(đối đỉnh)

AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC

góc DBK= góc ECK 

=>tam giác DKB=tam giác EKC(g.c.g) 

=>KB=KC(2 cạnh tương ứng) 

=>tam giác KBC là tam giác cân .

2 tháng 7 2016

A B C D E K

a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:

AB = AC ( \(\Delta\) ABC cân tại A )

BAE = CAD ( chung góc A )

AD = AE ( giả thiết )

.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)

=> BE = CD ( 2 cạnh tương ứng )

Vậy BE = CD ( đpcm)

b) Ta có:  \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )

=> ABE = ACD (  2 góc tương ứng )

Vậy ABE = ACE ( đpcm )

c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )

=> ABC = ACB ( tính chất tam giác cân )

hay DBC = ECB (2)

Xét \(\Delta\) DBC và \(\Delta\) ECB có:

CD = BE ( chứng minh a)

DBC = ECB ( chứng minh (2) )

BC là cạnh chung

=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )

=> DCB = EBC ( 2 góc tương ứng )

hay KCB = KBC 

Xét \(\Delta\) KBC có: KCB = KBC

=> \(\Delta\) KBC cân tại K

Vậy \(\Delta\) KBC cân tại K 

Chuk bn hk tốt ! vui

24 tháng 1 2021

undefined

\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)

\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)

\(AB=AC\left(cmt\right)\left(1\right)\)

\(\widehat{A}\text{ chung}\left(2\right)\)

\(AD=AE\left(gt\right)\left(3\right)\)

\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)

\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)

\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)

\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)

\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)

\(\Rightarrow BE=CD\)

\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)

\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)

\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)

\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)

\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)

\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)

\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)

\(BE=CD\left(cmt\right)\left(7\right)\)

\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)

\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)

\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)

\(\Rightarrow\Delta IBC\text{ cân tại I}\)

\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)

\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)

\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)

\(AB=AC\left(\text{câu a}\right)\left(9\right)\)

\(AM\text{ chung}\left(10\right)\)

\(BM=CM\left(cmt\right)\left(11\right)\)

\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)

\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)

\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)

\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)

\(EI=DI\left(cmt\right)\left(12\right)\)

\(AI\text{ chung}\left(13\right)\)

\(AE=AD\left(gt\right)\left(14\right)\)

\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)

\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)

\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)

\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

19 tháng 4 2016

Tự kẻ hình nha !!!

 a)Tam giác ABC cân tại A =>AB=AC;góc B= góc C

D thuộc AB => BD+AD= AB

C thuộc AC =>CE + EA = AC

Mà AB=AC nên AD=EA

Xét tam giác AEB và tam giác ADC:

AD=EA( cmt)

AB=AC(cmt)

góc A: góc chung

=>tam giác AEB = tam giác ADC (c.g.c)

=>BE=CD(2 cạnh tương ứng)

b)theo a) ta có tam giác AEB=tam giác ADC=>góc ABE= góc ACD( 2 góc tương ứng)

c)ta có góc B= góc C và góc ABE = góc ACD

Mà góc ABE + góc EBC =  goc B

      Góc ACD +góc DCB= góc C =>góc EBC = góc DCB 

Tam giác KBC có: góc EBC = góc DCB =>tam giác KBC là tam giác cân tại K

    * nhớ k cho mk nhé!!!

22 tháng 4 2021

hướng dẫn:

a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)

** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**

=> BE = CD

b) (1) => ABE^ = ACD^

c) Dễ thấy BD = CE

từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)

=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân

19 tháng 4 2016

 a) Vì tg ABC là tg cân nên AB = AC mà AD = AE => AB – AD = AC – AE

=> BD = CE => ĐPCM

Xin lỗi mình chỉ giải đc phần a thôi

19 tháng 4 2016

bạn chọn mình rồi mình mới làm

7 tháng 6 2019

7 tháng 3 2022

a.Xét tam giác ABE và tam giác ACD, có:

\(\widehat{A}:chung\)

AD = AE ( gt )

AB = AC ( ABC cân )

Vậy tam giác ABE = tam giác ACD ( c.g.c )

b.Xét tam giác DBC và tam giác ECB, có:

BD = CE ( AB=AC; AD=AE )

góc B = góc C ( ABC cân )

BC: cạnh chung 

Vậy tam giác DBC = tam giác ECB ( c.g.c )

=> góc DCB = góc EBC ( 2 góc tương ứng )

=> Tam giác KBC là tam giác cân và cân tại K

c.Xét tam giác AKB và tam giác AKC có:

AB=AC ( ABC cân )

góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )

AK: cạnh chung 

Vậy tam giác AKB = tam giác AKC ( c.g.c )

=> góc BAK = góc CAK ( 2 góc tương ứng )

Mà Tam giác ADE cân tại A ( AD=AE )

=> AK là đường cao 

=> AK vuông DE (1)

Mà Tam giác KBC cân tại K 

=> AK vuông với BC (2)

Từ (1) và (2) => DE//BC

d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến

Mà M là trung điểm BC 

=> A,K,M thẳng hàng