Tính S = 1-3+32-33+...+398-399
Ai giải đúng và nhanh nhất sẽ được 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3≡−1(mod4)⇒3100≡(−1)100=1(mod4)
Vậy 3100 chia 4 dư 1.
a) Ta có 3S=3−32+33−34+...+397−398+399−3100
⇒3S+S=1−3100⇒S=(1−3100)/4
Để chứng minh S chia hết cho 20 ta chứng minh 1−3100 chia hết cho 80.
Ta có 32=9≡−1(mod5)⇒3100≡(−1)50=1(mod5)⇒1−3100≡1−1=0(mod5)
Vậy 1−3100 ⋮5
Ta có 34=81≡1(mod16)⇒3100≡125=1(mod16)⇒1−3100≡1−1=0(mod16)
Vậy 1−3100 ⋮16
Do (5,16)=1⇒1−3100⋮16.5=80⇒(1−3100)/4 ⋮20⇒S thuộc B 20
Sorry vừa ròi mk nhầm S=\(\frac{1-3^{100}}{4}\)mới đúng nha
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}.\)
\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}.\)
\(3S+S=\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)
\(4S=-3^{100}+1\)
\(S=\frac{-3^{100}+1}{4}\)
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
=> 12x-33 = 3
=> 12x = 3+33 = 36
=> x = 36 : 12 = 3
Vậy x=3
k mk nha
Vì |2y-4| lớn hơn hoặc bằng 0 (1)
|y-1| lớn hơn hoặc bằng 0(2)
mà |2y-4|-|y+1|=-1
=>|2y-4| nhỏ hơn |y+1| 1 đơn vị
Từ (1) và (2)
=> |2y-4|-|y+1|=2y-4 -(y+1)=-1
2y-4 -y-1=-1
(2y-y)+(-4-1)=-1
y + -5=-1
y=-1+5
y=4
Vậy y =4
Nhớ k cho m nha !
Chúc bn học tốt !
x2 có giá trị nhỏ nhất là 0
vậy (x2+1)2016 có GTNN = 1 KHI x =0
từ đó GTNN P = 1+2017 = 2018
P=(x2 +1)2016+|2x-2015|
Vì (x2+1)2016 > |2x-2015|
mà cả hai đều lớn hơn hoặc bằng 0
=> (x2+1)2016 > hoặc = 0
|2x-2015| > hoặc = 0
TH1 :Dấu "=" xảy ra khi (x2+1)2016=0
=>x2+1=0
=>x2=-1
Vì x2 > hoặc = 0
mà -1 < 0
=> xE {rỗng}
TH2 : dấu "=" xảy ra khi |2x-2015|=0
=>2x-2015=0
=>2x=2015
=>x=1007,5
=>(x2+1)2016+|2x-2015|
=>(1007,52+1)2016+|2.1007,5-2015|
=>(1015057,25)2016+0
=>GTNN của P =1015057,252016 khi x=1007,5
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
S = 1-3+32-33+...+398-399
3S=3-32+33-34+...+399-3100
=>3S-S=2S=1-3100
\(S=\frac{1-3^{100}}{2}\)
S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3S = 3 - 3^2 + 3^3 - 3^4 + ... + 3^98 - 3^100
=> 3S + S = (3 - 3^2 + 3^3 - 3^4 + ... + 3^98 - 3^100) + (1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99)
=> 4S = 1 - 3^100
=> S = 1 - 3^100 / 4