Câu 1 . Từ điểm A nằm bên ngoài đường tròn (o) về hai tiếp tuyến AB,AC lần lượt tại B,C của (o) a.chứng minh tứ giác ABOC nội tiếp đường tròn b.vẽ đường kính BD,CE của (o) , gọi I là giao điểm của AO và BC ,gọi F là giao điểm của đường thẳng DI và (o) , với F khác (o) Chứng minh ba điểm A,F,E thẳng hàng c.Chứng minh OF là tiếp tuyến của đường tròn ngoại tiếp tam giác AIF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
2: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
góc EBC=1/2*sđ cung EC=90 độ
=>EB vuông góc BC
=>EB//OA
góc BCD=1/2*sđ cung BD=90 độ
=>CD vuông góc BC
=>CD//OA
=>góc AiF=góc CDF
=>góc AIF=góc ACF
=>AFIC nội tiếp
=>góc AIC=góc AFC=90 độ
góc AFC+góc EFC=90+90=180 độ
=>E,F,A thẳng hàng
a: góc OBA+góc OCA=90+90=180 độ
=>OBAC nội tiếp
Xét ΔCME và ΔBMC có
góc M chung
góc CEM=góc BCM
=>ΔCME đồng dạng với ΔBMC
b: Xét ΔABE và ΔAKB có
góc ABE=góc AKB
góc BAE chung
=>ΔABE đồng dạng với ΔAKB
=>BF/BK=BA/AK=AE/AB
Xét ΔACE và ΔAKC có
góc ACE=góc AKC
góc CAE chung
=>ΔACE đồng dạng với ΔAKC
=>CE/CK=AE/AC
=>CE/CK=BF/BK
=>CE*BK=CF*BK
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA
=>AI*AO=2R^2
Xét ΔBDE vuông tại D có DC vuông góc BE
nên ΔBDE vuông tại D
=>BC*BE=BD^2=4R^2
=>BC*BE+AI*AO=6R^2
a. Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
\(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
\(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.
Suy ra: tứ giác ABOC nội tiếp.
b. Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.
\(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao
\(\Rightarrow\)AO\(\perp\)BC tại H.
Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:
AO2 = AB2 + BO2 = 42 + 32 = 25
\(\Rightarrow\)AO = 5 (cm).
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:
AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)
c. Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )
Xét \(\Delta\)ACE và \(\Delta\)ADC có:
\(\Lambda ACE=\Lambda ADC\)
\(\Lambda\)CAD chung
Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:
AC2 = AH.AO (2)
Từ (1) và (2) ,suy ra: AD.AE = AH.AO.
a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)
\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)
Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)
b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.
Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:
\(AO^2=AB^2+BO^2=4^2+3^2=25\)
\(\Rightarrow\sqrt{AO}=5\) cm.
Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:
\(AB^2=AH\cdot AO\)
\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
Bán kính là OA/2
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AO vuông góc BC
c: Xét ΔAMB và ΔABN có
góc AMB=góc ABN
góc MAB chung
=>ΔAMB đồng dạng với ΔABN
=>AM/AB=AB/AN
=>AB^2=AM*AN=AH*AO
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên AO là trung trực của BC
=>AO vuông góc BC
góc EBC=1/2*180=90 độ
=>EB vuông góc BC
=>AO//EB
b: Xét ΔMAD và ΔMBA co
góc AMD chung
góc MDA=góc MAB
=>ΔMAD đồng dạng với ΔMBA
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
góc EBC=1/2*sđ cung EC=90 độ
=>EB vuông góc BC
=>EB//OA
góc BCD=1/2*sđ cung BD=90 độ
=>DC//OA//EB
=>góc AIF=góc CDF=góc ACF
=>AFIC nội tiếp
=>góc AFC=góc AIC=90 độ
góc AFC+góc EFC=180 độ
=>E,F,A thẳng hàng