Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
2: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
góc EBC=1/2*sđ cung EC=90 độ
=>EB vuông góc BC
=>EB//OA
góc BCD=1/2*sđ cung BD=90 độ
=>CD vuông góc BC
=>CD//OA
=>góc AiF=góc CDF
=>góc AIF=góc ACF
=>AFIC nội tiếp
=>góc AIC=góc AFC=90 độ
góc AFC+góc EFC=90+90=180 độ
=>E,F,A thẳng hàng
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0
=> tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho ADE nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh A B 2 = A D . A E .
Tam giác ADB đồng dạng với tam giác ABE
⇒ A B A E = A D A B ⇔ A B 2 = A D . A E
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Ta có D H A ^ = E H O ^
nên D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H thẳng hàng.
Có 1 phần câu trả lời ở đây.
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube
1. có góc B cộng góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp
2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.
3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn
b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.
Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1)
AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC
=> AO vuông góc BC (2)
Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.
Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB
=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB
Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800
=> Tứ giác AIKH nội tiếp đường tròn (đpcm).
b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD
\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC
Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC
=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)
Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)
Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600
<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.
Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)
=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.
Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK
=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).
1. Vì BO vuông góc với BA => góc ABO = 90 độ
Vi CO vuông góc với CA => góc ACO = 90 độ
Xét tứ giác ABOC có : Góc ABC = 90 độ, Góc ACO = 90 độ
mà 2 góc trên đối nhau và có tổng = 180 độ
=> tứ giác ABOC là tứ giác nội tiếp đường tròn.
Nối A với O, ta được tam giác ABO vuông tại B.
Vẽ trung tuyến BI của tam giác ABO => IO = IA = IB
=> I là tâm đường tròn ngoại tiếp tứ giác ABOC.
2. Câu này câu hỏi là gì vậy?
3,
a. Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
\(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
\(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.
Suy ra: tứ giác ABOC nội tiếp.
b. Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.
\(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao
\(\Rightarrow\)AO\(\perp\)BC tại H.
Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:
AO2 = AB2 + BO2 = 42 + 32 = 25
\(\Rightarrow\)AO = 5 (cm).
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:
AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)
c. Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )
Xét \(\Delta\)ACE và \(\Delta\)ADC có:
\(\Lambda ACE=\Lambda ADC\)
\(\Lambda\)CAD chung
Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:
AC2 = AH.AO (2)
Từ (1) và (2) ,suy ra: AD.AE = AH.AO.
a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)
\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)
Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)
b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.
Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:
\(AO^2=AB^2+BO^2=4^2+3^2=25\)
\(\Rightarrow\sqrt{AO}=5\) cm.
Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:
\(AB^2=AH\cdot AO\)
\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)
a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)
Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC
\(\Rightarrow ABOC\)nội tiếp ( dhnb )
b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung
\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)
Xét tam giác ABM và tam giác ANB có:
\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)
\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)
c) Gọi H là giao điểm của BC và AO
Xét tam giác ABH và tam giác AOB có:
\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)
\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)
Xét tam giác AMH và tam giác AON có:
\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)
\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)
Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)
\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)
Xét tứ giác MHON có
\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác MHON
\(\Rightarrow MHON\)nội tiếp ( dhnb )
\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)
Vì H là giao điểm của BC và AO ( h.vẽ )
Mà \(AB,AC\)là tiếp tuyến của (O)
\(\Rightarrow BC\perp OA\)
\(\Rightarrow\widehat{BHO}=90^0\)
Vì NF là tiếp tuyến của (O) tại N
\(\Rightarrow\widehat{ÒNF}=90^0\)
Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON
=> FHON nội tiếp ( dhnb )
\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)
\(\Rightarrow FMON\)nội tiếp (dhnb)
\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)
\(\Rightarrow\widehat{FMO}=90^0\)
\(\Rightarrow FM\perp OM\)
\(\Rightarrow FM\)là tiếp tuyến của (O)
d) Vì E thuộc đường tròn ngoại tiếp tam giác MNO
\(\Rightarrow E\)thuộc đường tròn đường kính OF
\(\Rightarrow\widehat{OEF}=90^0\)
+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO
\(\Rightarrow\widehat{AEO}=90^0\)
\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)
\(\Rightarrow A,E,F\)thẳng hàng
Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)
Gọi K là trung điểm của MN
\(\Rightarrow OF\perp MN\)
\(\Rightarrow AK\perp OF\)
Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P
=> P là trực tâm của tam giác AOF
\(\Rightarrow OP\perp AF\left(6\right)\)
Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
góc EBC=1/2*sđ cung EC=90 độ
=>EB vuông góc BC
=>EB//OA
góc BCD=1/2*sđ cung BD=90 độ
=>DC//OA//EB
=>góc AIF=góc CDF=góc ACF
=>AFIC nội tiếp
=>góc AFC=góc AIC=90 độ
góc AFC+góc EFC=180 độ
=>E,F,A thẳng hàng