\(\sqrt{26}+\sqrt{17}và9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)
=> \(\sqrt{17}+\sqrt{26}>9\)
Ta có: \(\sqrt{17}+\sqrt{26}+\sqrt{101}>\sqrt{16}+\sqrt{25}+\sqrt{100}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+\sqrt{101}>4+5+10\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+\sqrt{101}>19\)
Mà \(\sqrt{441}=21\)
=> Có sai đề không?
22,
1, Đặt √(3-√5) = A
=> √2A=√(6-2√5)
=> √2A=√(5-2√5+1)
=> √2A=|√5 -1|
=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)
=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)
2, Đặt √(7+3√5) = B
=> √2B=√(14+6√5)
=> √2B=√(9+2√45+5)
=> √2B=|3+√5|
=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)
=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)
3,
Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C
=> √2C=√(18+2√17) - √(18-2√17) -\(2\)
=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)
=> √2C=√17+1- √17+1 -\(2\)
=> √2C=0
=> C=0
26,
|3-2x|=2\(\sqrt{5}\)
TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)
3-2x=2\(\sqrt{5}\)
-2x=2\(\sqrt{5}\) -3
x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)
TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)
3-2x=-2\(\sqrt{5}\)
-2x=-2√5 -3
x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)
Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)
2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12
3, \(\sqrt{x^2-2x+1}\)=7
⇔ |x-1|=7
TH1: x-1≥0 ⇔ x≥1
x-1=7 ⇔ x=8 (TMĐK)
TH2: x-1<0 ⇔ x<1
x-1=-7 ⇔ x=-6 (TMĐK)
Vậy x=8, -6
4, \(\sqrt{\left(x-1\right)^2}\)=x+3
⇔ |x-1|=x+3
TH1: x-1≥0 ⇔ x≥1
x-1=x+3 ⇔ 0x=4 (KTM)
TH2: x-1<0 ⇔ x<1
x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)
Vậy x=-1
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
\(\sqrt{99}\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Ta có: \(\sqrt{17}\)>\(\sqrt{16}\)=4
và \(\sqrt{26}\)>\(\sqrt{25}\)=5
nên \(\sqrt{17}\)+\(\sqrt{16}\)+1>4+5+1
\(\sqrt{17}\)+\(\sqrt{16}\)+1>10=\(\sqrt{100}\)>\(\sqrt{99}\)
Vậy \(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)
Ta có:
\(\sqrt{99}< \sqrt{100}=10\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Đề mình khỏi ghi nhé
= 5,09+4,12=9,21 => tổng đó > 9
Ta có:
\(\sqrt{26}+\sqrt{17}>\sqrt{25}+\sqrt{16}=5+4=9\)
Từ đó ta suy ra:
\(\sqrt{26}+\sqrt{17}>9\left(đpcm\right)\)
(Tíck cho mìk vs nha!)