Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{17}+\sqrt{26}+\sqrt{101}>\sqrt{16}+\sqrt{25}+\sqrt{100}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+\sqrt{101}>4+5+10\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+\sqrt{101}>19\)
Mà \(\sqrt{441}=21\)
=> Có sai đề không?
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
\(\sqrt{99}\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Ta có: \(\sqrt{17}\)>\(\sqrt{16}\)=4
và \(\sqrt{26}\)>\(\sqrt{25}\)=5
nên \(\sqrt{17}\)+\(\sqrt{16}\)+1>4+5+1
\(\sqrt{17}\)+\(\sqrt{16}\)+1>10=\(\sqrt{100}\)>\(\sqrt{99}\)
Vậy \(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)
Ta có:
\(\sqrt{99}< \sqrt{100}=10\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
√17 + √26 + 1 và √99
Ta có: √17 > √16 (1)
√26 > √25 (2)
Từ (1) và (2) => √17 + √26 + 1 > √16 + √25 + 1
=> √17 + √26 + 1 > 4 + 5 + 1
=> √17 + √26 + 1 > 10
=> √17 + √26 + 1 > √100
Do √100 > √99
=> √17 + √26 + 1 > √99
Ta có
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}\)(1)
Mà \(\sqrt{99}< \sqrt{100}\)(2)
Từ (1)(2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
P/s tham khảo nha
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy..........
\(\sqrt{26}+\sqrt{17}>\sqrt{25}+\sqrt{16}=5+4=9\)
Đề mình khỏi ghi nhé
= 5,09+4,12=9,21 => tổng đó > 9
Ta có:
\(\sqrt{26}+\sqrt{17}>\sqrt{25}+\sqrt{16}=5+4=9\)
Từ đó ta suy ra:
\(\sqrt{26}+\sqrt{17}>9\left(đpcm\right)\)
(Tíck cho mìk vs nha!)