K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

24 tháng 1 2021

xy + 2x - 3y = 9

\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3

\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3

\(\Leftrightarrow\) (2 + y)(x - 3) = 3

Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:

     x - 3         3          1         -1        -3
    2 + y         1          3        -3        -1
        x         6(TM)          4(TM)        2(TM)        0(TM)
        y        -1(TM)          1(TM)       -5(TM)       -3(TM)

Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}

Chúc bn học tốt!

10 tháng 3 2022

a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)

\(\dfrac{y}{4}=2\Leftrightarrow y=8\)

b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x1-12-23-36-6
y6-63-32-21-1

 

10 tháng 3 2022

trả lời câu b đi ạ

6 tháng 8 2023

Từ pt thứ 2, ta thấy \(y^2⋮9\Leftrightarrow y⋮3\) \(\Leftrightarrow y=3z\left(z\inℤ\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\9z^2-9xz=99\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\z^2-xz=11\end{matrix}\right.\) (*)

Từ pt đầu tiên của (*), ta thấy \(x⋮3\Leftrightarrow x=3t\left(t\inℤ\right)\)

Khi đó \(9t^2+9tz=2019\)  \(\Rightarrow2019⋮9\), vô lí. 

Do đó, pt đã cho không có nghiệm nguyên.

 

6 tháng 8 2023

Bạn xem lại đề

15 tháng 9 2018

x2-y2=y+1

4x2-4y2=4y+4

4x2-4y2-4y-4=0=4x2-4y2-4y-1-3

4x2-(4y2+4y+1)-3=0

4x2-(2y+1)2=3

(2x-2y-1)(2x+2y+1)=3

vì x,y thuộc Z

=>2x-2y-1, 2x+2y+1 thuộc Z

=>2x-2y-1, 2x+2y+1 thuộc Ư(3)

Bạn tự lập bảng rồi tính nốt nha

15 tháng 9 2018

Khó quá bn ơi !

29 tháng 9 2018

x(x² + x + 1) = 4y(y + 1)

<=> (x + 1)(x² + 1) = (2y + 1)²

Dễ dàng thấy là: x + 1 và x² + 1 nguyên tố cùng nhau nên x + 1 và x² + 1 là 2 số chính phương.

=> x²; x² + 1 là 2 số chính phương liên tiếp 

=> x = 0; y = 0 hoặc y = - 1

14 tháng 3 2020

Bg

Ta có: x2 + y2 = 34    (x; y \(\inℤ\))

Vì 62 hay (-6)2 = 36 > 34

Nên x và y nằm trong khoảng +1; +2; +3; +4; +5; 0

Với x = +5:

x2 + y2 = 34

25 + y2 = 34

        y2 = 34 - 25

        y2 = 9

        y2 = 32 hay (-3)2

        y   = 3

Và ngược lại với x = +3 thì y = +5

Với x = +4

Thì y không thỏa mãn điều kiện (tự tính)

Với x = +2

Thì y không thỏa mãn

Với x = +1

Thì y cũng không thỏa mãn

Với x = 0

Cũng không thỏa mãn

Vậy x = +3 với y = +5 hoặc x = +5 với y = +3

14 tháng 3 2020

A B C D M iw