Cho Parabol (P) y=x2 và đường thẳng (d): y=(2m+1)x-2m với m là tham số. Tìm m để (P) cắt (d) tại 2 điểm phân biệt A(x1; y1) và B(x2; y2) sao cho: y1+y2-x1x2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- xét phương trình hoành độ giao điểm : \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
- Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
- \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
- \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=\left(m+2\right)x-2m\Leftrightarrow x^2-\left(m+2\right)x+2m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=\left(m+2\right)^2-8m>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+\left(m+2\right)x_2=12\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+\left(m+2\right)x_2=12\)
\(\Leftrightarrow\left(m+2\right)x_1-2m+\left(m+2\right)x_2=12\)
\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m-12=0\)
\(\Leftrightarrow\left(m+2\right)^2-2m-12=0\)
\(\Leftrightarrow m^2+2m-8=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=2\left(loại\right)\end{matrix}\right.\)
Phương trình hoành độ giao điểm là:
\(x^2-mx+2m-4=0\)
\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16=\left(m-4\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0
hay m<>4
Ta có: \(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=m^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=2\left(m-1\right)x+5-2m\)
\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
Ta có: \(x_1+x_2=6\)
\(\Leftrightarrow2\left(m-1\right)=6\)
\(\Leftrightarrow m-1=3\)
hay m=4
Vậy: m=4
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn
Xét phương trình hoành độ giao điểm ta có
\(x^2=\left(2m+1\right)x-2m\Leftrightarrow\left(x-2m\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m\end{cases}}\)
để p cắt d tại hai điểm phân biệt thì \(2m\ne1\Leftrightarrow m\ne\frac{1}{2}\).
ta có \(\hept{\begin{cases}x_1=1\Rightarrow y_1=x_1^2=1\\x_2=2m\Rightarrow y_2=x_2^2=4m^2\end{cases}}\)Vậy \(y_1+y_2-x_1x_2=1+4m^2-2m=1\Leftrightarrow4m^2-2m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{1}{2}\end{cases}}\)
Kết hợp điều kiện hai nghiệm phân biệt ta có m =0
Xét PT hoành độ giao điểm của (P) và (d)
x2=(2m+1)x-2m
⇔x2-(2m+1)x+2m=0
a=1; b=-2m-1; c=2m
a+b+c=a+(-2m-1)+2m=0 Nên PT (1) có 2 nghiệm
x1=1 và x2=2m
*) với x1=1 ⇒y1=1
*) với x2=2m ⇒y2=(2m)2=4m2
Thay x1, x2, y1, y2 vào y1+y2-x1x2=1, ta có:
1+4m2-2m=1
⇔4m2-2m=0⇔2m(2m-1)=0 ⇔m=0 và m=\(\dfrac{1}{2}\)
Vậy với m=0 và 1/2 thì ......