Phân tích đa thức sau thành nhân tử
a) x2-10x+20
b)x2-2x+48
c)x2 -10x+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
b) \(x^2y-x^3-10y+10x\)
\(=x^2\left(y-x\right)-10\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-10\right)\)
c) \(x^2\left(x-2\right)+49\left(2-x\right)\)
\(=\left(x-2\right)\left(x^2-49\right)\)
\(=\left(x-2\right)\left(x-7\right)\left(x+7\right)\)
\(a,15x-5xy\\ =5x\left(3-y\right)\\ b,\left(x^2+1\right)^2-4x^2\\ =\left(x^2-x+1\right)\left(x^2+x+1\right)\\ c,x^2-10x-9y^2+25\\ =\left(x-5\right)^2-9y^2\\ =\left(x-9y-5\right)\left(x+9y-5\right)\)
\(=\left(x-y\right)\left(x+y\right)-10\left(x+y\right)=\)
\(=\left(x+y\right)\left(x-y-10\right)\)
= (x - y). (x + y) - 10 ( x - y)
= [( x + y) - 10)] . ( x - y)
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
Bài 1:
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
\(1,\\ a,=3x\left(x-3y\right)\\ b,=\left(x-5\right)^2-9y^2=\left(x-3y-5\right)\left(x+3y-5\right)\\ c,=3x\left(x-y\right)-2\left(x-y\right)=\left(3x-2\right)\left(x-y\right)\\ 2,\\ Sửa:x^2-6x+10=\left(x-3\right)^2+1\ge1>0,\forall x\)
1, =3x (2x -3y)
c, = 3x(x-y) -2(x-y)
= (3x-2)(x-y)
2, Ta có: x2 -6x+10= (x-3)2 +11
Nhận xét: (x-3)2 >= 0 với mọi số thực x
=> (x-3)2 +1 >= 1 >0 (đpcm)
a.
$64x^3-16x^2+x=x(64x^2-16x+1)$
$=x(8x-1)^2$
b.
$36-4xy+24y-x^2=(4y^2+24y+36)-(x^2+4xy+4y^2)$
$=(2y+6)^2-(x+2y)^2=(2y+6-x-2y)(2y+6+x+2y)$
$=(6-x)(x+4y+6)$
c.
$x^2+10x-2010.2020$
$=x^2+10x-(2015-5)(2015+5)
$=x^2+10x-(2015^2-5^2)$
$=(x^2+10x+5^2)-2015^2=(x+5)^2-2015^2$
$=(x+5-2015)(x+5+2015)=(x-2010)(x+2020)$
d.
$25x^2-121+22y-y^2$
$=(5x)^2-(y^2-22y+11^2)$
$=(5x)^2-(y-11)^2=(5x-y+11)(5x+y-11)$
e.
$(x^2+2x)(x^2+2x-2)-3$
$=(x^2+2x)^2-2(x^2+2x)-3$
$=(x^2+2x)^2+(x^2+2x)-3(x^2+2x)-3$
$=(x^2+2x)(x^2+2x+1)-3(x^2+2x+1)$
$=(x^2+2x+1)(x^2+2x-3)$
$=(x+1)^2[x(x-1)+3(x-1)]$
$=(x+1)(x-1)(x+3)$
c ) =x2-x-9x+9
=x(x-1)-9(x-1)
=(x-1)(x-9)