Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a, 5x - x 2 + 2xy - 5y
= 5x - x 2 + xy + xy - 5y
= ( 5x - 5y ) - ( x2 - xy ) + xy
= 5 ( x-y ) - x(x-y ) + xy
= (5-x) ( x-y) + xy
mik làm dc mỗi câu a !
a) 10x(x-y)-6y(y-x)=10x(x-y)+6y(x-y)=(10x+6y)(x-y)
b) \(x^2-25-2xy+y^2=x^2-2xy+y^2-25=\left(x-y\right)^2-25\)
\(=\left(x-y+5\right)\left(x-y-5\right)\)
c) \(x^2-5x+5y-y^2=\left(x^2-y^2\right)-\left(5x-5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)
d)\(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)\(=\left(x+3\right)\left(x+1\right)\)
e)\(x^2-4x-5=x^2-5x+x-5=x\left(x-5\right)+\left(x-5\right)\)\(=\left(x+1\right)\left(x-5\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a);b);c) Dùng máy tính (cụ thể là solve) bấm nghiệm rồi phân tích
d)Nhóm số T1;T2;T4 lại vs nhau
e)Biến đổi thành x2-2xy+y2-9y2
a, x^5+x^4+x^3-x^3-x²-x+x²+x+1
= x^3(x²+x+1)-x(x²+x+1)+1(x²+x+1)
= (x²+x+1).(x³-x²+1)
a) (x^2+x)^2-14(x^2+x)+24
=(x^2+x)^2-2(x^2+x)-12(x^2+x)24
=(x^2+x)(x^2+x-2)-12(x^2+x-2)
=(x^2+x-12)(x^2+x-2)
\(x^2-x+1=x^2-2\times x\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)\(\frac{3}{4}\)
= \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)
=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
vậy Min A= \(\frac{3}{4}\)dấu bằng xảy ra khi và chỉ khi \(x=\frac{1}{2}\)
ở trên bạn bỏ hộ mk 1 phân số \(\frac{3}{4}\)đi nhé mk viết thừa.
a)\(81x^2-6yz-9y^2-z^2\)
\(=81x^2-\left(z-3y\right)^2\)
\(=\left(9x-z+3y\right)\left(9x+z-3y\right)\)
b)\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
c)\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4z^2\right)\)
\(=3\left[\left(a-b\right)^2-4z^2\right]\)
\(=3\left(a-b-2z\right)\left(a-b+2z\right)\)
a)\(81x^2-6yz-9y^2-z^2=\left(9x\right)^2-\left(9y^2+6yz+z^2\right)=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x-3y-z\right)\left(9x+3y+z\right)\)b)\(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x^2-9\right)\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
c)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
\(a,15x-5xy\\ =5x\left(3-y\right)\\ b,\left(x^2+1\right)^2-4x^2\\ =\left(x^2-x+1\right)\left(x^2+x+1\right)\\ c,x^2-10x-9y^2+25\\ =\left(x-5\right)^2-9y^2\\ =\left(x-9y-5\right)\left(x+9y-5\right)\)
hé lu ông zà