Các biểu thức \(x+y+z\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) có thể cùng giá trị bằng 0 được hay không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 2 biểu thức tồn tại thì \(xyz\ne0\)
Giả sử cả 2 cùng bằng 0
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\\\dfrac{xy+yz+zx}{xyz}=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2=0\Rightarrow x=y=z=0\) (trái với điều kiện \(xyz\ne0\))
Vậy điều giả sử là ai hay 2 biểu thức ko thể đồng thời bằng 0
https://hoc24.vn/cau-hoi/tim-xyin-z-biet-a2x2-xy-7x-2y-y2-70bx2-2y2-3xy-3x-5y-140ps-huong-dan-em-lam-chi-tiet-dang-nay-nua-voi-a.330915967066
giúp e với anh :(
Giả sử \(\hept{\begin{cases}x+y+z=0\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\end{cases}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+zx=0\)
Ta có: \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)
\(\Leftrightarrow x=y=z=0\)
Khi đó thì \(\frac{1}{x},\frac{1}{y},\frac{1}{z}\)không có giá trị
Vậy x+y+z và 1/x+1/y+1/z không thể cùng có giá trị bằng 0
\(x-y-z=0\)
nên \(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)
\(B=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y}{x}\cdot\dfrac{-z}{y}\cdot\dfrac{x}{z}=-1\)
Với a, b, c khác -1 thì x + y + z khác 0.
Từ đề bài ta có: y + z = ax + cz + ax + by
<=> 2ax = y + z - x
--> a = (y + z - x)/(2x) --> a + 1 = (x + y + z)/(2x)
--> 1/(1 + a) = 2x/(x + y + z)
tương tự: 1/(1 + b) = 2y/(x + y + z)
1/(1 + c) = 2z/(x + y + z)
--> 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = (2x + 2y + 2z)/(x + y + z) = 2
vậy giá trị của biểu thức A= 2
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
\(\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\)
\(\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)
\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\)
\(=\left(\frac{y}{z}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{z}{y}+\frac{z}{x}\right)\)
\(=y\left(\frac{1}{z}+\frac{1}{x}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{y}+\frac{1}{x}\right)\)
\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}=-1-1-1=-3\)
Vậy nên A = -3
\(a^2-2b+6b+b^2=-10\)
\(\Leftrightarrow a^2-2a+6b+b^2+10=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-3\end{cases}}}\)
\(L=\frac{x+y}{z}+1+\frac{y+z}{x}+1+\frac{x+z}{y}+1-3\)
\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=0-3=-3\)
Không thể, vì nếu x ; y ; z đều bằng không thì các phân số \(\frac{1}{x};\frac{1}{y};\frac{1}{z}\) không có giá trị