K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

a./ \(A=81^7-27^9-9^{13}\)

  • A có các số hạng chia hết cho 3 => A chia hết cho 3
  • 81 có chữ số tận cùng là 1; 27= (274)2 có tận cùng là 1 => 279 = 27*278 có tận cùng là 7; 912 = (94)3 có tận cùng là 1 => 913 = 9*912 có tận cùng là 9

=> A có tận cùng là 1 - 7 - 9 = -15 hay tận cùng là 5 => A chia hết cho 5.

A chia hết cho 3 và 5 mà U(3;5) = 1 nên A chia hết cho 3*5 = 15. đpcm

b./ \(\left(x+y\right)^2=\left(x+y\right)\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)đpcm

5 tháng 7 2023

81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405

5 tháng 7 2023

Không chia hết đâu bạn ơi

 

 

7 tháng 10

1; 87 - 218 ⋮ 14

    A = 87 - 218 

   A = - 131 (là số lẻ); 14 là số chẵn 

   Số lẻ không bao giờ chi hết cho số chẵn

7 tháng 10

2; 76 + 75 - 913 ⋮ 55

    B = 76 + 75 - 913 

    B = 151 - 913

    B =  - 762 không chia hết cho 5 nên không chia hết cho 55

19 tháng 2 2022

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

7 tháng 10

d; 109 + 108 + 107 ⋮ 555

     109 + 108 + 107

  = 217 + 107

  = 324 < 555

  109 + 108 + 107 < 555 (không thể chia hết cho 555)

 

7 tháng 10

e; 817 - 279 - 913 ⋮ 45

     817 - 279  -913 

    = 538 - 913 

    = - 375 

      3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45

21 tháng 9 2017

de ma

AH
Akai Haruma
Giáo viên
12 tháng 4 2023

Lời giải:

$3x^2+x=4y^2+y$

$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$

$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$

$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$

Gọi $d=(x-y, 4x+4y+1)$

Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.

Từ $(1); (3)\Rightarrow y\vdots d$

Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$

$\Rightarrow d=1$

Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.

Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.

Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$

$=(x+y)^2t^2=[t(x+y)]^2$ là scp

Ta có đpcm.

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

25 tháng 10 2021

a: \(\dfrac{x^2+2xy+y^2}{x+y}=x+y\)

b: \(\dfrac{64x^3+1}{4x+1}=16x^2-4x+1\)

28 tháng 9 2021

a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)=\left(x+y\right)^2:\left(x+y\right)=x+y\)

b) \(=\left[\left(5x+1\right)\left(25x^2-5x+1\right)\right]:\left(5x+1\right)=25x^2-5x+1\)

c) \(=\left(y-x\right)^2:\left(y-x\right)=y-x\)

28 tháng 9 2021

\(a,=\left(x+y\right)^2:\left(x+y\right)=x+y\\ b,=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)=25x^2-5x+1\\ c,=\left(y-x\right)^2:\left(y-x\right)=y-x\)

7 tháng 3 2021

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

7 tháng 3 2021

tks nguoi ae