K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

=1/3.(3/14.17+3/17.20+...+3/161.164)

=1/3.(1/14-1/17+1/17-1/20+...+1/161-1/164)

=1/3.(1/14-1/164)

=1/3.75/1148

=25/1148

2 tháng 5 2016

\(A=\frac{1}{3}.\left(\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+......+\frac{1}{161}-\frac{1}{164}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{13}-\frac{1}{19}+.....+\frac{1}{613}-\frac{1}{619}\right)\)

2 tháng 5 2016

cdvxxxxxxxxxxxxxxxxx

AH
Akai Haruma
Giáo viên
28 tháng 1 2021

Lời giải:$A=\frac{1}{14}+\frac{1}{14.17}+\frac{1}{17.20}+...+\frac{1}{29.32}$

$3A=\frac{3}{14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{29.32}$$3A=\frac{3}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{29}-\frac{1}{32}$

$=\frac{4}{14}-\frac{1}{32}=\frac{57}{224}$

$\Rightarrow A=\frac{19}{224}$

AH
Akai Haruma
Giáo viên
28 tháng 1 2021

Lời giải:$A=\frac{1}{14}+\frac{1}{14.17}+\frac{1}{17.20}+...+\frac{1}{29.32}$

$3A=\frac{3}{14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{29.32}$$3A=\frac{3}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{29}-\frac{1}{32}$

$=\frac{4}{14}-\frac{1}{32}=\frac{57}{224}$

$\Rightarrow A=\frac{19}{224}$

12 tháng 5 2016

S = 1/2.5 +1/5.8 +1/8.11+1/11.14+1/14.17+1/17.20

S=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)

S=1/3.(1/2-1/20)

S=1/3.(10/20-1/20)

S=1/3.9/20

S= 3/20

k nha

28 tháng 3 2017

\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)

\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)

mk đầu tiên đó

28 tháng 3 2017

=\(\frac{3}{20}=0,15\)

12 tháng 5 2017

A=...

<=>\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{1}{17.20}\right)\)

<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)

<=>\(A=\frac{1}{6}-\frac{1}{60}< \frac{1}{6}< 1\)

12 tháng 5 2017

sai ùi 

7 tháng 4 2017

0,5141961273

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

B=\(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{14.17}+\frac{3}{17.20}\)

\(\Rightarrow B=\frac{5-2}{2.5}+\frac{8-5}{5.8}+...+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{20}=\frac{10}{20}-\frac{1}{20}=\frac{9}{20}\)

9 tháng 3 2018

a. \(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+......+\dfrac{3}{17.20}\)

\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+......+\dfrac{1}{17}-\dfrac{1}{20}\)

\(=\dfrac{1}{2}-\dfrac{1}{20}\)

\(=\dfrac{9}{20}\)

b. \(B=\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{4}-\dfrac{1}{10}\)

\(=\dfrac{3}{20}\)

c. \(C=\dfrac{4^2}{1.5}+\dfrac{4^2}{5.9}+......+\dfrac{4^2}{45.49}\)

\(=4\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+....+\dfrac{4}{45.49}\right)\)

\(=4\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+.....+\dfrac{1}{45}-\dfrac{1}{49}\right)\)

\(=4\left(1-\dfrac{1}{49}\right)\)

\(=4.\dfrac{48}{49}\)

\(=\dfrac{192}{49}\)