K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

\(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Do a>b>0 nên a-b>0. Áp dụng bất đẳng thức Cô-si cho 3 số dương ta được:

\(\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt{\left(a-b\right).b.\frac{1}{b\left(a-b\right)}}=3\)

=>\(a+\frac{1}{b\left(a-b\right)}\ge3\) (đpcm)

Dấu "=" xảy ra khi a=2;b=1

NV
29 tháng 2 2020

\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)

\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)

\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

5 tháng 8 2016

nhân chéo rồi tương đương đi bạn

5 tháng 8 2016

Côsi:

\(VT=\left(a-b\right)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{\left(a-b\right)\left(b+1\right)^2}-1\)

\(\ge4\sqrt[4]{\left(a-b\right).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{\left(a-b\right)\left(b+1\right)^2}}-1=3\)

Ở đây ko yêu cầu chỉ ra dấu bằng nên ta ko cần làm điều đó.

10 tháng 7 2019

Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)

Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)

\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)

\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0

Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)

22 tháng 8 2019

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{ab+bc+ca}{a+b+c}\right)\)

\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}\right)\)

\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

25 tháng 2 2020

\(VT=\Pi\left(1+1+\frac{a}{b}\right)^{\alpha}\ge\Pi\left(3\sqrt[3]{\frac{a}{b}}\right)^{\alpha}=\Pi\left[3^a\sqrt[3]{\frac{a^{\alpha}}{b^{\alpha}}}\right]=3^{3a}\)?!?

Mình làm sai ak?

7 tháng 12 2015

Ta có  \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\left(a-b\right)b.\frac{1}{b\left(a-b\right)}}=3\) ( cô si cho 3 số dương)