Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Do a>b>0 nên a-b>0. Áp dụng bất đẳng thức Cô-si cho 3 số dương ta được:
\(\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt{\left(a-b\right).b.\frac{1}{b\left(a-b\right)}}=3\)
=>\(a+\frac{1}{b\left(a-b\right)}\ge3\) (đpcm)
Dấu "=" xảy ra khi a=2;b=1
Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)
\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)