\(a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)

a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

nhân chéo rồi tương đương đi bạn

5 tháng 8 2016

Côsi:

\(VT=\left(a-b\right)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{\left(a-b\right)\left(b+1\right)^2}-1\)

\(\ge4\sqrt[4]{\left(a-b\right).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{\left(a-b\right)\left(b+1\right)^2}}-1=3\)

Ở đây ko yêu cầu chỉ ra dấu bằng nên ta ko cần làm điều đó.

5 tháng 8 2016

\(2a^3+1\ge12ab-12b^2\Leftrightarrow2a^3+1-12ab+12b^2\ge0\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)+3\left(a^2-4ab+4b^2\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)+3\left(a-2b\right)^2\ge0\left(luondung\right)\)

5 tháng 8 2016

c/m tương đương.
nhân chéo lên đi

10 tháng 7 2019

Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)

Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)

\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)

\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0

Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)

25 tháng 2 2020

\(VT=\Pi\left(1+1+\frac{a}{b}\right)^{\alpha}\ge\Pi\left(3\sqrt[3]{\frac{a}{b}}\right)^{\alpha}=\Pi\left[3^a\sqrt[3]{\frac{a^{\alpha}}{b^{\alpha}}}\right]=3^{3a}\)?!?

Mình làm sai ak?

27 tháng 11 2017

Áp dụng BĐT AM-GM ta có: 

\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)

\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)

\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)

Khi \(a=b=\frac{1}{\sqrt{2}}\) 

27 tháng 11 2017

\(BDT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Theo BĐT Nesbitt thì : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\frac{9}{4}\)

11 tháng 6 2020

Không mất tính tổng quát, chuẩn hóa a + b + c = 3 \(\Rightarrow0< a,b,c< 3\)

Khi đó bất đẳng thức tương đương với: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{3}{4}\)

Xét BĐT phụ: \(\frac{x}{\left(3-x\right)^2}\ge\frac{2x-1}{4}\)với \(x\in\left(0;3\right)\)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(-2x+9\right)}{4\left(3-x\right)^2}\ge0\)(đúng với mọi \(x\in\left(0;3\right)\))

Áp dụng, ta được: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{2a-1}{4}+\frac{2b-1}{4}+\frac{2c-1}{4}\)

\(=\frac{2\left(a+b+c\right)-3}{4}=\frac{3}{4}\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = c