K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2022

Gọi con số xuất hiện trên xúc xắc thứ i (với \(1\le i\le5\) ) là \(x_i\) (với \(1\le x_i\le6\))

Ta cần tìm số bộ nghiệm nguyên dương của pt:

\(x_1+x_2+x_3+x_4+x_5=14\)

Đặt \(y_i=x_i-1\Rightarrow y_1+y_2+y_3+y_4+y_5=9\) (1) với \(y_i\) không âm

Đưa về bài toán chia kẹo Euler: tìm số nghiệm nguyên không âm của pt:

\(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\)

Theo bài toán chia kẹo, số nghiệm nguyên ko âm bất kì của (1) là: \(C_{9+5-1}^{5-1}=C_{13}^4\)

Bây giờ, do vai trò của \(y_i\) như nhau, ta xét pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_1\ge6\end{matrix}\right.\)

Đặt \(y_1-6=z_1\Rightarrow z_1+y_2+y_3+y_4+y_5=3\) (2)

\(\Rightarrow\) (2) có số nghiệm nguyên ko âm là: \(C_{5+3-1}^{5-1}=C_7^4\)

Do ko thể tồn tại cùng lúc 2 giá trị i; j sao cho \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6;y_j\ge6\end{matrix}\right.\)

Nên các trường hợp \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6\end{matrix}\right.\) là độc lập (các tập hợp này giao nhau đều bằng rỗng)

Do đó, số nghiệm của pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\) là: \(C_{13}^4-5.C_7^4\)

6 tháng 5 2018

Đáp án A

27 tháng 9 2023

\(n_{\Omega}=6^3=216\)

a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"

\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"

Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}

=> \(n_{\overline{A}}=4.4.4=64\)

Vậy, XS của biến cố A là:

\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)

b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"

=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"

=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)

Vậy, XS của biến cố B là:

\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)

 

 

27 tháng 9 2023

Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6

- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 13” là biến cố chắc chắn nên biến cố có xác suất là 1.

- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 1” là biến cố không thể nên biến cố có xác suất là 0.

4 tháng 5

Em muốn câu hỏi nhỏ hơn 4 thầy ơi 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).

Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega  \right)}} = \frac{8}{{36}} = \frac{2}{9}\).

7 tháng 9 2019

Đáp án A

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

a) Ta có \(E = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {2,1} \right);\left( {2,2} \right)} \right\}\). Suy ra \(n\left( E \right) = 4\) và \(P\left( E \right) = \frac{4}{{36}} = \frac{1}{9}\).

b) Ta có \(F = \{(1,5);(2,5);(3,5);(4,5);(5,5);(6,5);(1,6);(2,6);(3,6);(4,6);(5,6);(6;6)\}\). Suy ra \(n\left( F \right) = 12\). Vậy \(P\left( F \right) = \frac{{12}}{{36}} = \frac{1}{3}\).

c) Ta có \(G = \{ \left( {1;1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {4,1} \right);\left( {5,1} \right)\} \). Suy ra \(n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).

d) Ta có \(H = \{ ( 1,1 );( 1,2 );( 2,1 );( 1,4 );( 2,3 );( 3,2 );( 4,1 );( 1,6 ) ;( 2,5 ) ;( 3,4 );( 4,3 );( 5,2 );( 6,1 );( 5,6 );( 6,5 ) \}\). Suy ra \(n\left( H \right) = 15\). Vậy \(P\left( H \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).

30 tháng 11 2018

Đáp án C

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Để phản ánh được khả năng xảy ra của biến cố trên ta tính xác suất của biến cố đó trong trò chơi giao xúc xắc.

Xác suất của biến cố trong trò chơi này bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.