Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự
Gọi A là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”. Tập hợp mô tả biến cố A là:
\(A = \left\{ {(1;4),(2;5),(3;6)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số chấm trên hai con xúc xắc)
b) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự
Gọi B là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”. Tập hợp mô tả biến cố B là:
\(A = \left\{ {(1;5),(2;5),(3;5),(4;5),(6;5)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số chấm trên hai con xúc xắc)
c) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự
Gọi C là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”. Tập hợp mô tả biến cố C là:
\(C = \left\{ {(a,b)\left| {a = 2,4,6;b = 1;3;5} \right.} \right\}\)(Với kết quả của phép thử là cặp số (a,b) trong đó a và b lần lượt là số chấm trên hai con xúc xắc)
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\).
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\)
Gọi E là biến cố \(E = \left\{ {\left( {1,1} \right);\left( {1;2} \right);\left( {1,3} \right);\left( {2 ;1} \right);\left( {2;2} \right);\left( {3,1} \right)} \right\}\) suy ra \(n\left( E \right) = 6\)
Vậy \(P\left( E \right) = \frac{6}{{36}} = \frac{1}{6}\).
Chọn B
\(n_{\Omega}=6^3=216\)
a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"
\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"
Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}
=> \(n_{\overline{A}}=4.4.4=64\)
Vậy, XS của biến cố A là:
\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)
b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"
=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"
=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)
Vậy, XS của biến cố B là:
\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)
Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?
Tổng số chấm của hai con xúc sắc lớn nhất có thể là: 6+6=12 (chấm)
Vậy tất cả các kết quả gieo hai con xúc sắc đều là kết quả thuận lợi đối với biến cố D. Số kết quả thuận lợi: 6 x 6 = 36 (kết quả)
Và không có kết quả nào thuận lợi với biến cố E (không có TH nào tổng số chấm hai con xúc sắc gieo ra được bằng 13)
Số phần tử của không gian mẫu là \(n\left( \Omega \right) \ = {6^2}\; =36 \) .
a) Gọi A là biến cố: “Tổng số chấm trên hai con xúc xắc bằng 8”
Ta có \(A = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\) suy ra \(n\left( A \right) = 5\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}\)
b) Gọi B là biến cố: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”
Gọi C là biến cố: “Tổng số chấm trên hai con xúc xắc lớn hơn 8”
\(C = \left\{ {\left( {3;6} \right),\left( {4;5} \right),\left( {4;6} \right),\left( {5;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\) suy ra \(n\left( C \right) = 10\)
Ta có: \(n\left( B \right) = n\left( \Omega \right) - n\left( A \right) - n\left( C \right) = 21\)
Vậy xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).
a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:
\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)
\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)
b) Từ tập hợp mô tả biến cố ở câu a) ta có:
Có 6 kết quả thuận lợi cho biến cố B
Có 3 kết quả thuận lợi cho biến cố C
Các trường hợp để tổng số chấm xuất hiện trên con xúc xắc bằng 8 qua hai lần gieo là: (4,4), (3,5), (5,3), (2,6), (6,2).
Chọn C.
Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = {6^2}\)
a) Gọi biến cố A “Tổng số chấm xuất hiện lớn hơn hoặc bằng 10” là biến cố đối của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10”
A xảy ra khi số chấm xuất hiện là 5 hoặc 6. Số kết quả thuận lợi cho A là \(n(A) = {2^2}\)
Xác suất của biến cố A là \(P(A) = \frac{{{2^2}}}{{{6^2}}} = \frac{1}{9}\)
Vậy xác suất của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10” là \(1 - \frac{1}{9} = \frac{8}{9}\)
b) Gọi biến cố A: “Tích số chấm xuất hiện không chia hết cho 3” là biến cố đối của biến cố ‘“Tích số chấm xuất hiện chia hết cho 3”
A xảy ra khi mặt xuất hiện trên hai con xúc xắc đều xuất hiện số chấm không chia hết cho 3. Số kết quả thuận lợi cho A là: \(n(A) = {4^2}\)
Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{{4^2}}}{{{6^2}}} = \frac{4}{9}\)
Vậy xác suất của biến cố “Tích số chấm xuất hiện chia hết cho 3” là \(1 - \frac{4}{9} = \frac{5}{9}\)
Ta có số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
a) Ta có \(E = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {2,1} \right);\left( {2,2} \right)} \right\}\). Suy ra \(n\left( E \right) = 4\) và \(P\left( E \right) = \frac{4}{{36}} = \frac{1}{9}\).
b) Ta có \(F = \{(1,5);(2,5);(3,5);(4,5);(5,5);(6,5);(1,6);(2,6);(3,6);(4,6);(5,6);(6;6)\}\). Suy ra \(n\left( F \right) = 12\). Vậy \(P\left( F \right) = \frac{{12}}{{36}} = \frac{1}{3}\).
c) Ta có \(G = \{ \left( {1;1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {4,1} \right);\left( {5,1} \right)\} \). Suy ra \(n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).
d) Ta có \(H = \{ ( 1,1 );( 1,2 );( 2,1 );( 1,4 );( 2,3 );( 3,2 );( 4,1 );( 1,6 ) ;( 2,5 ) ;( 3,4 );( 4,3 );( 5,2 );( 6,1 );( 5,6 );( 6,5 ) \}\). Suy ra \(n\left( H \right) = 15\). Vậy \(P\left( H \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).