Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 5" là: 4
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 10" là: 3
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5'' là:\(3+4=7\)
Xác suất của biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5" là: \(\dfrac{7}{36}\)
\(\Rightarrow C\)
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.
Gọi con số xuất hiện trên xúc xắc thứ i (với \(1\le i\le5\) ) là \(x_i\) (với \(1\le x_i\le6\))
Ta cần tìm số bộ nghiệm nguyên dương của pt:
\(x_1+x_2+x_3+x_4+x_5=14\)
Đặt \(y_i=x_i-1\Rightarrow y_1+y_2+y_3+y_4+y_5=9\) (1) với \(y_i\) không âm
Đưa về bài toán chia kẹo Euler: tìm số nghiệm nguyên không âm của pt:
\(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\)
Theo bài toán chia kẹo, số nghiệm nguyên ko âm bất kì của (1) là: \(C_{9+5-1}^{5-1}=C_{13}^4\)
Bây giờ, do vai trò của \(y_i\) như nhau, ta xét pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_1\ge6\end{matrix}\right.\)
Đặt \(y_1-6=z_1\Rightarrow z_1+y_2+y_3+y_4+y_5=3\) (2)
\(\Rightarrow\) (2) có số nghiệm nguyên ko âm là: \(C_{5+3-1}^{5-1}=C_7^4\)
Do ko thể tồn tại cùng lúc 2 giá trị i; j sao cho \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6;y_j\ge6\end{matrix}\right.\)
Nên các trường hợp \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6\end{matrix}\right.\) là độc lập (các tập hợp này giao nhau đều bằng rỗng)
Do đó, số nghiệm của pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\) là: \(C_{13}^4-5.C_7^4\)
Đáp án C