tìm a,b biết: \(\dfrac{a}{b}=\dfrac{4}{5}\) và BCNN(a,b)=540
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{a}{b}=\dfrac{36}{45}=\dfrac{4}{5}\Rightarrow a=4k,b=5k\)
BCNN (a,b) =300 mà \(\left(4,5\right)=1\Rightarrow k=300:\left(4.5\right)=15\)
Vậy \(a=4.15=60;b=5.15=75\)
a) \(24=2^3.3\)
\(60=2^2.3.5\)
\(UCLN\left(a;b\right)=UCLN\left(24;60\right)=2^2.3=6\)
\(BCNN\left(a;b\right)=BCNN\left(24;60\right)=2^3.3.5=120\)
\(a.b=UCLN\left(a;b\right).BCNN\left(a;b\right)\)
\(\Rightarrow a.b=6.120=720\)
mà \(\dfrac{a}{b}=\dfrac{24}{60}\Rightarrow\dfrac{a}{24}=\dfrac{b}{60}=\dfrac{720}{24.60}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=24.\dfrac{1}{2}=12\\b=60.\dfrac{1}{2}=30\end{matrix}\right.\)
Vậy Phân số cần tìm là \(\dfrac{12}{30}\)
b) \(\left\{{}\begin{matrix}14=2.7\\21=3.7\end{matrix}\right.\)
\(\Rightarrow UCLN\left(a;b\right)=UCLN\left(14;21\right)=7\)
\(a.b=UCLN\left(14;21\right).BCNN\left(14;21\right)\)
\(\Rightarrow a.b=7.3456=24192\)
\(\dfrac{a}{b}=\dfrac{14}{21}\Rightarrow\dfrac{a}{14}=\dfrac{b}{21}=\dfrac{a.b}{14.21}=\dfrac{24192}{294}=\dfrac{576}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{576}{7}.14=1152\\b=\dfrac{576}{7}.21=1728\end{matrix}\right.\)
Vậy phân số cần tìm là \(\dfrac{1152}{1728}\)
a) \(\dfrac{a}{5}=\dfrac{b}{4}\Rightarrow\dfrac{a^2}{25}=\dfrac{b^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{25}=\dfrac{b^2}{16}=\dfrac{a^2-b^2}{25-16}=\dfrac{1}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{1}{9}\cdot25=\dfrac{25}{9}\\b^2=\dfrac{1}{9}\cdot16=\dfrac{16}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3};b=\dfrac{4}{3}\\a=\dfrac{-5}{3};b=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left(a;b\right)\in\left\{\left(\dfrac{5}{3};\dfrac{4}{3}\right);\left(-\dfrac{5}{3};-\dfrac{4}{3}\right)\right\}\)
b) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=4.4=16\\b^2=4.9=36\\c^2=4,16=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=4;=6;c=8\\a=-4;b=-6;c=-8\end{matrix}\right.\)
Vậy (a;b;c) \(\in\left\{\left(4;6;8\right);\left(-4;-6;-8\right)\right\}\)
Ta có: \(\dfrac{a}{3}=\dfrac{b}{4}\)
\(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)
\(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a-b-c}{8-12-15}=\dfrac{28}{-19}=\dfrac{-28}{19}\)
Do đó: \(\left\{{}\begin{matrix}a=\dfrac{-224}{19}\\b=\dfrac{-336}{19}\\c=\dfrac{-420}{19}\end{matrix}\right.\)
Ta có: \(\dfrac{a}{b}=\dfrac{132}{143}=\dfrac{12}{13}\)
nên a=12k; b=13k với k∈N (1)
Ta có: ƯCLN (12;13) = 1 => ƯCLN (12k;13k)=1 =>BCNN(12k;13k)=12.13k (2)
Theo đề bài thì BCNN(a,b)=1092 (3)
Từ (1); (2) và (3) , ta có:
12.13k=1092 ⇔ 156k=1092 ⇔ k=7
Khi đó a=12.7=84; b=13.7=91
Vậy a=84; b=91
Câu 5:
a: Hệ số tỉ lệ k của y đối với x là:
\(k=\dfrac{y}{x}=\dfrac{3}{-6}=-\dfrac{1}{2}\)
b: \(\dfrac{y}{x}=-\dfrac{1}{2}\)
=>\(y=-\dfrac{1}{2}x\)
=>\(x=\dfrac{\left(-2\right)\cdot y}{1}=-2y\)
c: Khi x=1/2 thì \(y=-\dfrac{1}{2}\cdot\dfrac{1}{2}=-\dfrac{1}{4}\)
d: Khi y=-8 thì \(x=\left(-2\right)\cdot\left(-8\right)=16\)
Câu 3:
Gọi số học sinh của hai lớp 7A và 7B lần lượt là a(bạn) và b(bạn)
(Điều kiện: \(a,b\in Z^+\))
Lớp 7A có ít hơn lớp 7B là 5 bạn nên b-a=5
Số học sinh của lớp 7A và lớp 7B lần lượt tỉ lệ với 8 và 9 nên ta có
\(\dfrac{a}{8}=\dfrac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{9}=\dfrac{b-a}{9-8}=\dfrac{5}{1}=5\)
=>\(a=5\cdot8=40;b=5\cdot9=45\)
Vậy: Lớp 7A có 40 bạn; lớp 7B có 45 bạn
Câu 4:
Gọi khối lượng giấy vụn lớp 6a,6b,6c quyên góp được lần lượt là a(kg),b(kg),c(kg)
(Điều kiện: a>0;b>0;c>0)
Vì khối lượng giấy vụn mà ba lớp 6a,6b,6c quyên góp được lần lượt tỉ lệ với 9;7;8 nên \(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}\)
Tổng khối lượng giấy vụn ba lớp quyên góp được là 120kg nên a+b+c=120
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{9+7+8}=\dfrac{120}{24}=5\)
=>\(a=5\cdot9=45;b=5\cdot7=35;c=8\cdot5=40\)
Vậy: Lớp 6a quyên góp được 45kg; lớp 6b quyên góp được 35kg; lớp 6c quyên góp được 40kg