A B C H 8cm 5cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí Pytago tam giác HIK vuông tại H
\(HK=\sqrt{IK^2-HI^2}=4cm\)
chọn A
Áp dụng định lý Pitago vào tam giác HIK vuông tại H
Ta có \(HI^2+HK^2=IK^2=>3^2+4^2=IK^2\\ =>9+16=IK^2=>IK^2=25=>IK=\sqrt{25}=5\)
=> Chọn C
Câu 2. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau :
A. 3cm; 5cm; 7cm
B. 4cm; 6cm; 8cm
C. 5cm; 7cm; 8cm
D. 3cm; 4cm; 5cm
\(3^2+4^2=5^2\)
Cái này còn được gọi là tam giác Ai Cập nữa nhé :))
thể tích của hình hộp chữ nhật là
12 x 8 x 5 = 480 (cm3)
đs : 480 cm3
Bạn chỉ cần áp dụng định lý py-ta-go đảo là ra!
A: \(3cm,5cm,7cm\)
Ta có: \(7^2=49\)
\(3^2+5^2=9+25=34\)
Vì \(49>34\)
=> Tam giác này không phải là tam giác vuông
B: \(4cm,6cm,8cm\)
Ta có: \(8^2=64\)
\(4^2+6^2=16+36=52\)
Vì \(64>52\)
=> Tam giác này không phải là tam giác vuông
C: \(5cm,7cm,8cm\)
Ta có: \(8^2=64\)
\(5^2+7^2=25+49=74\)
Vì \(64< 74\)
=> Tam giác này không phải là tam giác vuông
D: \(3cm,4cm,5cm\)
Ta có: \(5^2=25\)
\(3^2+4^2=9+16=25\)
Vì \(25=25\)
=> Tam giác này là tam giác vuông ( theo định lý py-ta-go đảo )
Nhưng cái nào không phải là tam giác vuông thì không cần ghi theo định lý py-ta-go ở cuối nha!
Lời giải:
a) Ta thấy: $\frac{3}{9}=\frac{4}{12}=\frac{5}{15}$
$\Leftrightarrow \frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{CA}{C'A'}$
$\Rightarrow \triangle ABC\sim \triangle A'B'C'$ (c.c.c)
b)
\(\frac{8}{8}=\frac{9}{9}\Leftrightarrow \frac{BC}{A'B'}=\frac{CA}{B'C'}=1\). Tỷ số này khác với $\frac{AB}{C'A'}(=\frac{7}{12})$
Nên không tồn tại 2 tam giác đồng dạng trong TH này.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
Diện tích của tam giác là:
8 x 5 : 2 = 20 (cm2)
Đáp số: 20 cm2