K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 7 2020

Lời giải:

a) Ta thấy: $\frac{3}{9}=\frac{4}{12}=\frac{5}{15}$

$\Leftrightarrow \frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{CA}{C'A'}$

$\Rightarrow \triangle ABC\sim \triangle A'B'C'$ (c.c.c)

b)

\(\frac{8}{8}=\frac{9}{9}\Leftrightarrow \frac{BC}{A'B'}=\frac{CA}{B'C'}=1\). Tỷ số này khác với $\frac{AB}{C'A'}(=\frac{7}{12})$

Nên không tồn tại 2 tam giác đồng dạng trong TH này.

10 tháng 5 2018

a. Đúng

b. Sai

c. Sai

d. Đúng

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

a) Ta thấy:

$\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$ nên 2 tam giác đồng dạng theo TH c.c.c

b) Pitago: $A'C'=\sqrt{B'C'^2-A'B'^2}=\sqrt{16^2-9^2}=5\sqrt{7}$

Xét tam giác $ABC$ và $A'B'C'$ có:

$\widehat{A}=\widehat{A'}=90^0$

$\frac{AB}{AC}\neq \frac{A'B'}{A'C'}$

Do đó 2 tam giác không đồng dạng

9 tháng 7 2019

Chọn D

a: Xét ΔA'B'C' và ΔABC có 

A'B'/AB=A'C'/AC=B'C'/BC

Do đó: ΔA'B'C'\(\sim\)ΔABC

b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)

a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

AB/DE=AC/DF

Do đó: ΔABC\(\sim\)ΔDEF

b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)

16 tháng 9 2023

limdim

8 tháng 2 2019

123456789

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

5 tháng 7 2017

a) Hai tam giác đồng dạng với nhau vì \(\dfrac{40}{8}=\dfrac{50}{10}=\dfrac{60}{12}\) (cùng bằng 5)

b) Hai tam giác không đồng dạng với nhau vì \(\dfrac{3}{9}\ne\dfrac{4}{15}\)

c) Hai tam giác đồng dạng với nhau vì \(\dfrac{1}{2}=\dfrac{1}{2}=\dfrac{0,5}{1}\)